1,234 research outputs found

    Dynamics of Nucleation in the Ising Model

    Full text link
    Reactive pathways to nucleation in a three-dimensional Ising model at 60% of the critical temperature are studied using transition path sampling of single spin flip Monte Carlo dynamics. Analysis of the transition state ensemble (TSE) indicates that the critical nuclei are rough and anisotropic. The TSE, projected onto the free energy surface characterized by cluster size, N, and surface area, S, indicates the significance of other variables in addition to these two traditional reaction coordinates for nucleation. The transmission coefficient along N is ~ 0.35, and this reduction of the transmission coefficient from unity is explained in terms of the stochastic nature of the dynamic model.Comment: In press at the Journal of Physical Chemistry B, 7 pages, 8 figure

    APENet: LQCD clusters a la APE

    Get PDF
    Developed by the APE group, APENet is a new high speed, low latency, 3-dimensional interconnect architecture optimized for PC clusters running LQCD-like numerical applications. The hardware implementation is based on a single PCI-X 133MHz network interface card hosting six indipendent bi-directional channels with a peak bandwidth of 676 MB/s each direction. We discuss preliminary benchmark results showing exciting performances similar or better than those found in high-end commercial network systems.Comment: Lattice2004(machines), 3 pages, 4 figure

    Many-core applications to online track reconstruction in HEP experiments

    Full text link
    Interest in parallel architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of Graphic Processing Units (GPUs) and Intel Many Integrated Core architecture (MIC) when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the parallel devices.Comment: Proceedings for the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP); missing acks adde

    Vacuum Condensates and Dynamical Mass Generation in Euclidean Yang-Mills Theories

    Full text link
    Vacuum condensates of dimension two and their relevance for the dynamical mass generation for gluons in Yang-Mills theories are discussedComment: Talk given at the International Conference on Color Confinement and Hadrons in Quantum Chromodynamics, Confinement 2003, TITech and RIKEN, Tokyo, Japan, July 21-24, 200

    Status of the APENet project

    Get PDF
    Comment: 6 pages, 5 figures, poster presented at Lattice 2005 (Algorithms and Machines), Dublin, July 25-3

    Finite-top-mass effects in NNLO Higgs production

    Get PDF
    We construct an accurate approximation to the exact NNLO cross section for Higgs production in gluon-gluon fusion by matching the dominant finite top mass corrections recently computed by us to the known result in the infinite mass limit. The ensuing corrections to the partonic cross section are very large when the center of mass energy of the partonic collision is much larger than the Higgs mass, but lead to a moderate correction at the percent level to the total Higgs production cross section at the LHC. Our computation thus reduces the uncertainty related to these corrections at the LHC from the percent to the per mille level.Comment: 4 pages, 4 figures; to be published in the proceedings of QCD2008. Reference adde

    High-speed data transfer with FPGAs and QSFP+ modules

    Full text link
    We present test results and characterization of a data transmission system based on a last generation FPGA and a commercial QSFP+ (Quad Small Form Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver available in copper or optical cable assemblies for an aggregated bandwidth of up to 40 Gbps. We implemented a complete testbench based on a commercial development card mounting an Altera Stratix IV FPGA with 24 serial transceivers at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We present test results and signal integrity measurements up to an aggregated bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation proceedings of Topical Workshop on Electronics for Particle Physics 2010, 20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019

    More on ghost condensation in Yang-Mills theory: BCS versus Overhauser effect and the breakdown of the Nakanishi-Ojima annex SL(2,R) symmetry

    Get PDF
    We analyze the ghost condensates , and in Yang-Mills theory in the Curci-Ferrari gauge. By combining the local composite operator formalism with the algebraic renormalization technique, we are able to give a simultaneous discussion of , and , which can be seen as playing the role of the BCS, respectively Overhauser effect in ordinary superconductivity. The Curci-Ferrari gauge exhibits a global continuous symmetry generated by the Nakanishi-Ojima (NO) algebra. This algebra includes, next to the (anti-)BRST transformation, a SL(2,R) subalgebra. We discuss the dynamical symmetry breaking of the NO algebra through these ghost condensates. Particular attention is paid to the Landau gauge, a special case of the Curci-Ferrari gauge.Comment: 33 pages, 2 eps figures. v2: version published in JHEP, author added, error in potential corrected. Results and conclusions unchange
    • 

    corecore