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Abstract

We analyze the ghost condensates < f “bccbcc>, < f “bCEbE°> and < f “bchcC> in Yang-Mills
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1 Introduction

Vacuum condensates play an important role in quantum field theory. They can be used to
parametrize some non-perturbative effects. If one wants to attach a physical meaning to a
certain condensate in case of a gauge theory, it should evidently be gauge invariant. Two
well known examples in the context of QCD are the gluon condensate <F 5V> and the quark

condensate (gq).

Recently, there was a growing interest for a mass dimension 2 condensate in (quarkless)
QCD in the Landau gauge, see e.g. [I, 2, B, E, B, 6]. Unfortunately, no local gauge in-
variant operator with mass dimension 2 exists. However, a non-local gauge invariant di-
mension 2 operator can be constructed by minimizing A? along each gauge orbit, namely

2
A% = (V) 'miny [ d*x (Ag) with VT the space time volume and U a generic SU(N)

transformation. This operator is related to the Gribov region as well as the so-called funda-

2
mental modular region (FMR), which is the set of absolute minima of [ d*z (AL]) [, 8, @].

In particular, in the Landau gauge d,A* = 0, it turned out that A2, reduces to the local

operator A2. This gives a meaning to the condensate <A2>. In [6], an effective action was
constructed in the weak coupling for the <A2> condensate by means of the local composite
operator technique (LCO) and it was shown that (A?) # 0 is dynamically favoured since it
lowers the vacuum energy. Due to this condensate, the gluons achieved a mass.

In this article, we will discuss other condensates of mass dimension 2 [I0], namely pure
ghost condensates of the type < f“bccbcc>, < f“bCEbEC> and < f“bcébcc>. Historically, these con-
densates came to attention in [IT, 2, T3, [T4] in the context of SU(2) Yang-Mills theory in
the Maximal Abelian gauge. This is a partial non-linear gauge fixing which requires the in-
troduction of a four ghost interaction term for consistency. A decomposition, by means of a
Hubbard-Stratonovich auxiliary field, similar to the one of the 4-fermion interaction of the
Gross-Neveu model [I5], allowed to construct a 1-loop effective potential, leading to a non-
trivial minimum for the ghost condensate corresponding to < fabchcc>. It was recognized in
[T, T2), T3] that this condensate signals the breakdown of a global SL(2, R) symmetry of the
SU(2) Maximal Abelian gauge model. The ghost condensate was used to find a mass for the
off-diagonal gluons, and thereby a certain evidence for the Abelian dominance was established
[T4]. It has been shown since then that the ghost condensate gives in fact a tachyonic mass [16].

It is worth mentioning that a simple decomposition of the 4-fermion interaction might cause
troubles with the renormalizability beyond the 1-loop order. For instance, in the case of
the Gross-Neveu model, this procedure requires the introduction of ad hoc counterterms to
maintain finiteness [I77, [I8]. A similar problem can be expected with the 4-ghost interaction.
The LCO procedure gave an outcome to this problem [I7].

Another issue that deserves clarification is the fact that with a different decomposition, differ-
ent ghost condensates appear [19], corresponding to the Faddeev-Popov charged condensates
< f“bccbcc> and < f“bCEbEC>. The existence of several channels for the ghost condensation has a
nice analogy in the theory of superconductivity, known as the BCS versus Overhauser effect.
The BCS channel corresponds to the charged particle-particle and hole-hole pairing [20), 1],



while the Overhauser channel to the particle-hole pairing [22), 23]. In the present case, the
Faddeev-Popov charged condensates < f“bCEbEC> and < f“bccbcc> would correspond to the BCS

channel, while < f“bcébcc> to the Overhauser channel. The question is whether one of these
effects would be favoured. A simultaneous discussion of both effects is necessary to find out
if one vacuum is more stable than the other.

It is appealing that by now the ghost condensates have been observed also in a class of
non-linear generalized covariant gauges [24, 25], the so-called Curci-Ferrari gauges', again
by the decomposition of a 4-ghost interaction [28]. The Curci-Ferrari gauge has the Landau
gauge as a special case. Although the Landau gauge lacks a 4-ghost interaction, it has been
shown that the ghost condensation also takes place in this gauge [29]. Evidently, this was
not possible by the decomposition of a 4-point interaction. However, the combination of the
LCO method [0, B0] with the algebraic renormalization formalism [31), B2] allowed for a clean
treatment of the ghost condensation in the Landau gauge.

It seems thus that the ghost condensation takes place in a variety of gauges: the Landau
gauge, the Curci-Ferrari gauge and the Maximal Abelian gauge. It is known that the Lan-
dau gauge and Curci-Ferrari gauge exhibit a global continuous symmetry, generated by the
so-called Nakanishi-Ojima algebra [33, B4, 35, B6l, B7, B8]. This algebra contains, next to
the BRST and anti-BRST transformations, a SL(2, R) subalgebra generated by the Faddeev-
Popov ghost number and 2 other operators, § and §. Moreover, § and 6 mutually transform
the ghost operators f®¢cbe®, fobeebee and f*¢ePcC into each other. It is then apparent that the
ghost condensation can appear in several channels like the BCS and Overhauser channel, and
that a non-vanishing vacuum expectation value for the ghost operators indicates a breakdown
of this SL(2, R) symmetry.

Recently, it has been shown that the same? NO invariance of the Landau and Curci-Ferrari
gauge can be maintained in the Maximal Abelian gauge for any value of N [39]. Apparently,
an intimate connection exists between the NO symmetry and the appearance of the ghost
condensates, since all gauges where the ghost condensates has been proven to occur, have the
global NO invariance.

The aim of this article is to provide an answer to the aforementioned issues. We will discuss the
Curci-Ferrari gauge. For explicit calculations, we will restrict ourselves to the Landau gauge
for SU(2). The presented general arguments are however neither depending on the choice of
the gauge parameter, nor on the value of N. The paper is organized as follows. In section
2, we show that it is possible to introduce a set of external sources for the ghost operators,
according to the LCO method, and this without spoiling the NO invariance. Employing the
algebraic renormalization technique [31, [32], it can then be checked that the proposed action
can be renormalized. In section 3, the effective potential for the ghost condensates is evalu-
ated. By contruction, this effective potential, incorporating the BCS as well as the Overhauser
channel, is finite up to any order and obeys a homogeneous renormalization group equation.
Next, in section 4, we pay attention to the dynamical symmetry breaking of the NO algebra
due to the ghost condensates. Because of the SL(2, R) invariance of the presented framework,

'Referring to the massive Curci-Ferrari model that has the same gauge fixing terms [26}, 2.
2The SL(2, R) symmetry discussed in [T}, 2 I3} B5] is only acting non-trivially on the off-diagonal fields.



it becomes clear that a whole class of equivalent, non-trivial vacua exist. The Overhauser
and the BCS vacuum are important special cases. Notice that a nonvanishing condensate
< f“bccbcc> # 0 could seem to pose a problem for the Faddeev-Popov ghost number symmetry
and for the BRST symmetry, two basic properties of a quantized gauge theory. However, we
shall be able to show that one can define a nilpotent BRST and a Faddeev-Popov symmetry
in any possible ghost condensed vacuum. The existence of the NO symmetry plays a key
role in this. Since the ghost condensates carry a color index, we also spend some words on
the global SU(N) color symmetry. Here, we can provide an argument that, thanks to the
existence of the condensate <A2> and of its generalization <%A2 + aEc> in the Curci-Ferrari
gauge 0], the breaking of the color symmetry, induced by the ghost condensates, should be
located in the unphysical part of the Hilbert space. Furthermore, we argue why no physical
Goldstone particles should appear by means of the quartet mechanism [1]]. Section 5 handles
the generalization of the results to the case with quarks included. In section 6, we give an
outline of future research where the gluon and ghost condensates can play a role. We end
with conclusions in section 7. Technical details are collected in the Appendices A and B.

2 The set of external sources for both BCS and Overhauser
channel

2.1 Introduction of the LCO sources
For a thorough introduction to the local composite operator (LCO) formalism and to the

algebraic renormalization technique, the reader is referred to [6l, B0], respectively [31].

According to the LCO method, the first step in the analysis of the ghost condensation in
both channels is the introduction of a suitable system of external sources. Generalizing the
construction done in the pure BCS case [29], it turns out that the simultaneous presence of
both channels is achieved by considering the following BRST invariant external action

1 1
Srco = s / d*z <Laca + A® (ba — gfabcébcc) + (n*L* — in“gfabcébéc + §p/\“wa —wic )
1 1
/ Az (5 [agfabccbcc §TagfabCEbEc nagfabcbbzc CTa [%
1 1
agfabCEbCC )\agfabcbbcc 5)\(192 fabczbfcmncmcn §p a a)

(2.1)
The BRST transformation s is defined for the fields AZ, c®, ¢, b as
_ b b
sAy, = —Dyc
sc® = gfabccbcc
s¢* = b*
sb* = 0 (2.2)
with
DI = 0,0% + gf*PAS, (2.3)
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the adjoint covariant derivative.

The external sources L% 7%, A\, w®, n® transform as

sn* = 1%, st"= 0, (2.4)
sAY = W', sw*=0,
sL* =0

La ,’7(1 Ta )\a wa
Dimension 2 11212 (2.5)
Gh. Number | =2 | 1 | 2 | =1] O

;From expression () one sees that the sources L%, 7% couple to the ghost operators g f®¢cc
gf®eebe¢ of the BCS channel, while w® accounts for the Overhauser channel gf®°e’cc. As
far as the BRST invariance is the only invariance required for the external action (), the
LCO parameters ¢ and p are independent. However, it is known that both the Landau and
the Curci-Ferrari gauge display a larger set of symmetries, giving rise to the NO algebra
[24, 25, 33, B4, B5, B0, B7, B8, BI]. It is worth remarking that the whole NO algebra can be
extended also in the presence of the external action S;cp, provided that the two parameters
¢ and p obey the relationship

p=2( (2.6)

In other words, the requirement of invariance of S;oo under the whole NO algebra allows
for a unique parameter in expression (ZII). In order to introduce the generators of the NO
algebra, let us begin with the anti-BRST transformation 3

SAY = —DWe

50 = —p® _|_gfabcchc

S0 — g fabCEbEC

s = —gfvte (2.7)

Extending 3 to the external LCO sources as

st = —w', s=0 (2.8)
s\ = L%, Sw*= 0
SLY = 0
one easily verifies that
{5,5} =s5+3s=0 (2.9)

Furthermore, the requirement of invariance of Spco under 5 fixes the parameter p = 2,
namely
5S1co=0 = p=2¢ (2.10)

This is best seen by observing that, when p = 2(, the whole action Srco can be written as

swozg/fuv&+awmw%q (2.11)



Concerning now the other generators § and & of the NO algebra, they can be introduced as
follows

oct = *
She — g fabechee
04, = 6c* =0
oL = 2w*
ow® = —71¢
o\ = —n*
ot = =0 (2.12)
and
oc" = ¢
50 — g pabeghge
0A), = 6¢" =0
ow* = L°
0T = 2w
St = -\
OL* = 0A"=0 (2.13)
It holds that
6Srco = 6Srco =0 (2.14)

The operators s, 5, §,  and the Faddeev-Popov ghost number operator dpp give rise to the
NO algebra

s =0, 3=0
{8,3} = 0, [5,3] :5Fp,
[6,0pp] = —26, [0,0pp] =20
[S,(spp] = -5, [3,5Fp] =3,
[s,0] = 0, [38 =0,
[s,0] = -3, [5,0]=—s (2.15)

In particular, 6pp, 0, & generate a SL(2, R) subalgebra. We remark that the NO algebra
can be established as an exact invariance of S;co only when both channels are present. It is
easy to verify indeed that setting to zero the external sources corresponding to one channel
will imply the loss of the NO algebra. This implies that a complete discussion of the ghost
condensates needs sources for the BCS as well as for the Overhauser channel.

Let us also give, for further use, the expressions of the gauge fixed action in the presence
of the LCO external sources for the Curci-Ferrari gauge.

S = Sym+Sar+rp+ SLco
1 1
= 1 /d4:L'F/fVF“W + s§/d4x <§AZA“” + A% + (A + et — %c%“)
(2.16)



with

SGF+FP — /d4$ <baauAau + %baba + EaauDzbcb _ %gfabcbaabcc _ %g2fabchdeEaEdeCe>
(2.17)

The renormalizability of the action ([ZI6) is discussed in the Appendix A.

The Curci-Ferrari gauge has the Landau gauge, o = 0, as interesting special case, see for
example [0]. One sees that the difference between the two actions is due to the term ac®c®,
which gives rise to a quartic ghost self interaction absent in the Landau gauge. The whole set
of NO invariances can be translated into functional identities which ensures the renormaliz-
ability of the model. In particular, concerning the counterterm contributions 67 L%gf®¢cc®,
8,7 fee¢ and J,wgf P | it is shown in the Appendix A that

6, =6, =6, =0 (2.18)

Consequently, the operators gf®cbce, gf®eePe® and ¢f®°ec® turn out to have the same
anomalous dimension for any «. As expected, this result is a consequence of the presence of
the NO symmetry. Moreover, in the Landau gauge, d3 = 0 due to the nonrenormalization
properties of the Landau gauge [31]. In [42], one can find an explicit proof that do = 0.

2.2 A note on the choice of the hermiticity properties of the Faddeev-
Popov ghosts

With our choice of ghosts ¢, respectively anti-ghosts ¢, the hermiticity assignment

= ¢
¢ = —¢ (2.19)

is obeyed. This implies that ¢ and ¢ are independent degrees of freedom and by a redefinition
ic =@, we have real (anti-)ghost fields ¢ and . Another assignment that is used sometimes,
reads

d = ¢ (2.20)

As it was explored in e.g. [38, 1], the former assignment is the correct one for a generic gauge.
However, based on the additional ghost-anti-ghost symmetry in the Landau gauge, both
formulations are equivalent. Moreover, this equivalence, which is related to the existence of the
SL(2, R) symmetry, can be maintained if the Landau gauge is generalized to the Curci-Ferrari
gauge [3]. Since we are discussing the existence of < f“bCEbcc>, < f“bccbcc> and < f“bCEbEC>,
which break the SL(2, R) symmetry, the equivalence between the real formulation (ZI9) and
the complex one ([(ZZ20)) might be altered. For example, if < f“bccbcc> =+ < f“bCEbEC>, the ghost-
anti-ghost symmetry is lost, as well as the usual ghost number symmetry. Throughout this
article, we will use the prescription ([ZI9). We will return to the issue of the ghost number
symmetry later in this article.



3 Effective potential for the ghost condensates

3.1 General considerations

Let us proceed with the construction of the effective potential for the ghost condensates in
the Curci-Ferrari gauge. To decide which channel is favoured, we have to consider the 2
channels at once. We shall also treat the two LCO parameters p and ( for the moment as
being independent and verify the relationship (ZJI). Setting to zero the external sources 7
and A, we start from the action

1
S = Sym+Sgrirp+ /d4:1: {—w“gf“bcébcc + §pw“w“
1 1
+ §Lagfabccbcc _ §TagfabchEc + CTaLa] (31)

Following [0, B0], the divergences proportional to L7 are cancelled by the counterterm (7L,
and the divergences proportional to w? are cancelled by the counterterm %%)2. Considering
the bare Lagrangian associated to (BI), we have

o = V. ¢, =\ Z.C (32)
Ay = ZaA (3.3)
o = u'?Zyyg (3.4)
Z Z Z
L — —/2_“2 _,,—e/2_“2 _,,—e/2_ 42 )
b T n=n T W= p (3.5)
where Zy =1+ 02 (see (ZIF)).
Furthermore,
GriLE = Wt (C+aC)reLe (36)
1 1
SPwbwp = S (p+op)win (3.7)

where it is understood that we are working with dimensional regularization in d = 4 — ¢
dimensions. The above equations allow to derive the renormalization group equation of ¢ and

p

u;l—i = 2y(g*)C + dc(g”) (3.8)
MZ—Z = 2v(¢*)p + 0,(g%) (3.9)

where v(g?) denotes the anomalous dimension of the ghost operators gf¢c’c¢, gf®¢cPc® and

gf*eebee, given by
d Zo

2 — -
d¢ and 0, are defined as
0 0
lat) = (2= 26 ~ Ble) gy — vl ) 6 (3.11)
0 0
) = (2= 267 - BleP) gy — (a5 ) O (312)



where 3(¢?) = u% is the usual running of the coupling constant, in d dimensions given by

2
22 ,g°N 68 g*N
B(g?) = —eg” - §Q2W - 392 <167T2 +o (3.13)
while v,(g%) = gg—g denotes the running of the gauge parameter . We do not write the

possible a dependence of the appearing renormalization group functions; for the explicit cal-
culations in section 3.2, we will restrict ourselves to the Landau gauge. Therefore, we also do
not write down the explicit value of 74 (g?) since ay,(g?) = 0 for a = 0.

4(g%) denotes the anomalous dimension of the sources w, 7 and L. 7(g?) and 7(g?) are
related by

_ 5
(") =5 = (g% (3.14)
and therefore, the equations (BII))-(BI2) can be rewritten as
0c(g?) = (27(92) — A% 5 — (92)3) & (3.15)
¢ ag2 Y da '

0 0

2y _ 2y _ g2y 9 2y 9
Sp(g°) = (2’Y(g ) —Blg )892 aYalg )8a) op (3.16)

Notice that in the equations [BH)-(Bl), the parameter ¢ has immediately been set equal to
zero, this is allowed because all considered quantities are finite for ¢ — 0.

Since we have introduced 2 novel parameters®, we have a problem of uniqueness. However,
this can be solved by noticing that ¢ and p can be chosen to be a function of g2, such that

if g2 runs according to [BI3), ¢(¢?) and p(g?) will run according to (B, respectively ).
Explicitly, ¢(g%) and p(g?) are the solution of the differential equations

(3) 55 + ) ) €)= 296D + (e (317)
(36*) 55 + ) ) pla?) = 29(6D0(a") + 5,57 (3.15)

The integration constants of the solution of ([BIT)-([BIF]) can be put to zero;this eliminates
independent parameters and assures multiplicative renormalizability

C(g*) +6¢(g%e) = Ze(g®,e)C(g”) (3.19)
p(g®) +0p(g°,e) = Zy(g°,€)plg”) (3.20)

Notice that the n-loop knowledge of ¢((g?) and p(g?) will need the (n + 1)-loop knowledge of
B(g?), 7(g?), 0¢(g?) and 8,(g*) E0]. The generating functional W(w, 7, L), defined as

W L) _ / [D®]eiS @ L) (3.21)

with S(w, 7, L) given by ([BJ]) and ® denoting the relevant fields, will now obey a homogeneous
renormalization group equation [@, B0].

3In fact, only 1 novel parameter is introduced, since p = 2¢.



It is not difficult to see that §¢(g%),d,(¢9%) and ((g?), p(g?) will be of the form

54(92) = 5@,092 + 5¢,1g4 + - (3.22)
05(9%) = 0p0g® +0p1g" + - (3.23)
(g*) = Co+Gg*+- (3.24)
p(g*) = potpg’+-- (3.25)
Taking the functional derivatives of W(w, 7, L) with respect to the sources w®, 7* and L%, we
obtain a finite vacuum expectation value for the composite operators, namely
W 1) = gy (3.26)
dwe w=0,7=0,L=0 g '
or® w=0,7=0,L=0 2 '
W(w,1,L) _ 9 <fabccbcc> (3.28)
oL w=0,7=0,L=0 2 '

Since the source terms appear quadratically, we seem to have lost an energy interpretation.
However, this can be dealt with by introducing a pair of Hubbard-Stratonovich fields (o%, %)
for the 7L term, and a Hubbard-Stratonovich field ¢* for the w? term. For the functional
generator W(w, 7, L), we then get

. — . % 0, 0%7a,5% a
eiW(w,-r,L) _ /[d¢]els(o’o’d))+lfd4x(7w kit T ) (3.29)

where the action S(o,7,¢) is given by

oTFe GAge go
2C 242 " 2gc?
g fabch “ — % P ( fabch Cc)2 + 1 g2 fabc dee fadeEdEe)

4¢
(3.30)

fabc Cb e

S(0,7,¢) = Sym+ Sar+rp + /d49€ (—
¢(I

o
gp

a
be=b—c
gfeee’e” —
29¢

Notice also that in expression (B:29), the sources w , 7, L are now linearly coupled to the
fields ¢, o, 7, allowing thus for the correct energy interpretation of the corresponding effective
action. Taking the functional derivatives gives the relations

(") = —g*(fee) (3.31)

(0%) = §<f“bccbcc> (3.32)
2

(@) = T (foeede) (3.33)

where all vacuum expectation values are now calculated with the action (B30).

Summarizing, we have constructed a new, multiplicatively renormalizable Yang-Mills action
B30), incorporating the possible existence of ghost condensates. As such, if a non-trivial

10



vacuum is favoured, we can perturb around a more stable vacuum than the trivial one. The
action (B30) is explicitly NO invariant*. The corresponding effective action V (0,7, ) obeys
a homogeneous renormalization group equation.

To find out whether the groundstate effectively favours non-vanishing ghost condensates,
we will calculate the 1-loop effective potential. For the sake of simplicity, we will restrict our-
selves to the case of SU(2) Yang-Mills theories in the Landau gauge (o = 0). In this context,
we remark that one can prove that the vacuum energy will be gauge parameter independent
order by order. This proof is completely analoguous to the one presented in ()], and is based
on the fact that the derivative with respect to « of the action (1) is a BRST exact form plus
terms proportional to the sources, which equal zero in the minima of the effective potential.
As such, the usual proof of gauge parameter independence can be used [31].

3.2 Calculation of the 1-loop effective potential for N = 2 in the Landau
gauge

We will determine the effective potential [44] with the background field method [45]. Let us
define the 6 x 6 matrix

. gcecab 826“b . Eabc(z)c
M = ¢ eews ” (3.34)

cecab

_ a2cab _ ebege e
970 p ¢

where €%¢ are the structure constants of SU(2). Then the effective potential up to one loop
is easily worked out, yielding®

O.GECL (b[l (b[l Z

— — 21 ab )
Vi(o,a, ) 7C T o, + 5 ndet M (3.35)
or
V( B ¢) _ 0G4 N (ba(ba _/ ddk n kﬁ N k2 <O.a6a N (ba(ba) N EGbC(baO'bﬁc (3 36)
170 = g%¢ 2920 (27T)d ¢? P2 sz '

with k& Euclidean.

We notice that the mass dimension 6 operator €*¢¢%cG¢ enters the expression for the effec-
tive potential. We shall however show that this operator plays no role in the determination
of the minimum, which is a solution of

ot dih ot _0
g% T g2 d = begagbge
i g4¢ (2m) k6+k2(025a+¢iga)+sa cZ)Z; ¢

259 €abc¢ch
ov _ gt _ [ dl il AT —0 (3.37)
Odo? 9%¢ (2m)? kG"‘kz(nga*‘(paga)-ﬁ-sabcﬁz"bgc )

a abc _b=c
F1% . a f ddk 2k2%2‘+€ pE-ZO- _0
90— g% ) (2m)T 16, g0 e, %60 ) etbegasbze
Ko+k ¢2 + P2 + p¢2

“The NO variations of the ¢, 7 and ¢* fields can be determined immediately from (E31)-B33).
5We do not write the counterterms explicitly.
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Let us assume that (¢2,0%,7¢) is a solution of ([B317). Obviously, ¢¢ =0, 02 =0,7¢ =0 is a
solution, corresponding with the trivial vacuum energy E = 0.

Let us now assume that at least one of the field configurations is non-zero. If it occurs
that 0% = 3¢ = (0,0,0), then necessarily ¢¢ # (0,0,0) and it can be immediately checked
that the equations (B31) are reduced to

11 / d’k 1
— - = _ =0 (3.38)
2 2 dyg , (of7e | ¢%ee
9°¢ ¢ (27T)/<:+(<2+p2)

Next, we consider the case that o¢ # (0,0,0) and/or ¢ # (0,0,0). Without loss of generality,
we can consider o¢ # (0,0,0). Consider then the first equation of ([B37]).

d k:2" eabegb ge
2< / d k 6 2 o0 ¢ ¢p<2 Eabc(baobﬁc = O (339)
Tk +k:(<*+ 5 4 ot
By contracting the above equation with ¢, we find
LA d'k e _0 3.40
g%C a (27T)d k6 4 k2 (af&‘j i ¢g¢g) 4 cabegighze (3.40)
¢ I P
or, since o0 # 0
k)2
ddk vl
— =0 (3.41)
2 / 6 2 0*0'* ¢a¢a éab%‘ioﬁoi
C RO g2 (ZF 4 ) 4 e
Inserting (BZ1)) into [B39), one learns that
EabCQSQ Ui ddk‘ 1
pC2 /(27T)d 16 k2 olc? PL P2 eabe e gbe =0 (342)
* ( @ T ) e

Notice that the integral in ([Z42) is UV finite. If the integral of (B:42)) is non-vanishing, we
must have that
ePeptot =0 (3.43)

Evidently, we then also have that
abc¢a b—c -0 (344)

Expression ([BA1]) can then also be combined with the second and third equation of [B31) to
show that
abc(bb—c _ (345)

and
*olEs =0 (3.46)

Henceforth, we conclude that all contributions coming from the dimension 6 operator e?¢¢loca®
are in fact not relevant for the determination of the minimum configuration (¢¢,0%,3%). It is

sufficient to solve the following gap equation to search for the non-trivial minimum

1 1 [ d% 1
2C 2 =0 3.47
9*¢ ¢ / (2m) k4 + (o_g_ + ¢_:¢2_a) (3.47)
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In fact, this is the gap equation corresponding to the minimization of the potential (B30]) with
ecp?ab5¢ put equal to zero from the beginning, in which case the 1-loop potential reduces

to
_ eabe pagbge— Uaﬁa Cl qbaqba 1
V1(0-7O-7 ¢) ¢ 0 = 2 (1 - _92) <1 - p_g2)
9°Co o 2p0g* Po
9L

1 olFe ¢a¢a> C —I— —2—
In— % _3 3.48
* g ( g R (n " (348)

Moreover, we have explicitly verified that that the potential Vi, for e®¢¢%a?a¢ # 0, does in
fact admit the solution €*¢¢%c’G¢ = 0 for the minimum.

It remains to show that the integral of (BZ2) is non-vanishing for a non-trivial vacuum con-
figuration (E.,. # 0). We define

CL (b[l(b[l
a = —|—
C2 p?
abe ja ~b—=c
p o= BT ‘ﬁcg‘” (3.49)

and consider the integral

/ d*k 1 - / d /00 k3dk (3.50)
@m) kS +ak?+b ) (@2m)tJo kS4ak?+0b '

For a = 0 and b = 0, (B350) is vanishing, but then we also have that E.,,. = 0.
Via the substitution 2 = k2, one finds

k3dk o0 zdxr
/ 5 5 - (3.51)
k® + ak? + b 2 0o x>+axr+b

This integral is always positive for a > 0. For b = 0, this is immediately clear. For b # 0, we
perform a partial integration to find

1 /OO xdx B 22 / 3:17 + a / 3x + a d$
2Jo 2d+ar+b  4(23+ax+b)| 1 x3—|—aaj—|—b T 1 x3+ax+b)
(3.52)
For a > 0, the integral ([BX2) is also positive. Consider now the function F'(a,b), defined by
o xdx
F(a,b) = —_— 3.53
(a,0) /0 34+ ax+b (3.53)

We already know that, for @ > 0 and fixed b = b, F(a,b,) > 0. Furthermore

00 2
aF(a,b):_/ x2da <0 (3.54)
da 0 (z3+ax+Db)

meaning that the function F'(a,b,) decreases for increasing a. Assuming that F'(a,b) has
a zero at (ag,bp), then we should have that F'(a,by) becomes more negative as a increases,
which contradicts the fact that F(a,bg) > 0 for a > 0. Therefore, the function F'(a,b) cannot
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become zero and the integral in ([BZ2) never vanishes for a non-trivial vacuum configuration.

It remains to calculate (g, (1, po and p;. One finds (see the Appendix B)

2 4
g 1 g 1 6 )
¢ = -2 -4 J (4 2) 4. 3.55
¢ 8m2 e * (1672)2 (26 + g2 + (3:55)
2 4
g 1 g 1 12)
bp = ——=- -+ = 3.56
P 4n? e + (1672)2 (5 + g2 + (3:56)
Since in the Landau gauge Z» =1 and Z, = Zg_lZgl/2 (see e.g. [A2]), we have
1gD) = 2 1n Z4 = 7a(g?) (3.57)
2" du

where 74 (g?) is the anomalous dimension of the gluon field, given by [46, 47|

2
13 ¢°N 59 [ >N
2 = —-——
14007) = %162 T g <16W2 +... (3.58)
Henceforth, we find for (B.15)-(B.16)
2 4
g g
o) = gt me T (3.59)
2 4
2 9 g
50(9) = _W‘FW"F‘” (360)

Another good internal check of the calculations® is that the renormalization group functions

B359)-B60) are indeed finite.

Finally, solving the equations (BI1)-(BI8) leads to

GO = 13 (3.61)
o= - (3.62)
G = —% (3.63)
1= —% (3.64)

We indeed find that p = 2(. We already knew this from the NO invariance (see the
Appendix A), and we find that the MS scheme preserves this symmetry. It can also be
understood from a diagrammatical point of view. Consider (B]), first with only the source w
connected, and subsequently with only the sources 7, L connected. For each diagram giving a
divergence proportional to w? in the former case, there exists a similar diagram giving a diver-
gence proportional to 7L in the latter case. More precisely, when the appropriate symmetry
factor is taken into account, it will hold that

5p = 26¢ (3.65)

5See also the Appendix B.
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Combining this with (ET)-E12) and (EI7)-(EI8), precisely gives the relation (.8]).

Notice that, due to the identity (ZHl), the effective potential V(o,7,¢) of ([B30) can be
written in terms of 2 combinations of the fields o, @ and ¢, namely

2 a—a ¢a¢a
X = o'o"+ 1
X = oto’s (3.66)

As we have shown, Y does not influence the value of the minimum. So, it is sufficient to
consider the potential with ¥ = 0. (B48]) then becomes

. 2 1 2 2
Vi X—Ozx—(l—ﬁ2>+ = (In 5= -3 3.67
i 9%Co o' ) T\ gn (367)
Recalling (ZT2) and B3T), we find
0op = —20 (3.68)
o = 0 (3.69)
oc = ¢ (3.70)
Consequently
5X2 — ¢aaa+ (2¢ )(4_20 ) =0
ox = 0 (3.71)

A similar conclusion exists for 6 and dpp. Said otherwise, y and X are SL(2, R) invariants. Let
us make a comparison with the effective potential V' (?) of the O(N) vector model with field
© = (¢1,-..,%n). This potential is a function of the O(N) invariant norm ¢? = @34 - +¢%.
Choosing a certain direction for ¢ breaks the O(NN) invariance. In the present case, choosing a
certain direction for y breaks the SL(2, R) symmetry. However, the situation with the ghost
condensates is a bit more complicated than a simple breakdown of the SL(2, R).

Before we come to the discussion of the symmetry breaking, let us calculate the minima
of (B6T). We can use the renormalization group equation to sum leading logarithms and put

nt = zf—z The equation of motion, ‘fi—‘; = 0, has, next to the perturbative one x = 0, which
0
corresponds to a local maximum, a non-trivial solution, given by
2
g°N 9
= = — ~0.321 (3.72)
2
167 N2 28

where it is understood that ¢* = ¢*(f = \/X/|¢o|). Using the 1-loop expression
3 1

2 /—
9 () = T —= (3.73)

11N lnx’é

MS

we obtain

Xewe = 0.539A2 (3.74)

_ 4
En = —0.017A%~ (3.75)
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JFrom [B12), it follows that the expansion parameter is relatively small. A qualitatively
meaningful minimum, (B), is thus retrieved. The resulting vacuum energy (B70) is nega-
tive, implying that the ground state favours the formation of the ghost condensates.

4 Non-trivial vacuum configurations and dynamical breaking
of the NO symmetry

In this section, we discuss the consequences for the NO symmetry of a non-trivial vacuum

expectation value of the ghost operators f®¢clc®, fa¢ebc and/or f®¢c’c¢. The arguments

are general and applicable for all N and for all choices of the Curci-Ferrari gauge parameter
.

4.1 BCS, Overhauser or a combination of both?

Since the action [B30) is NO invariant, each possible vacuum state can be transformed into
another under the action of the NO symmetry. A special choice of a possible vacuum is the
pure Overhauser vacuum, determined by’

a __ ad 3 —
{ ¢ - ¢Vac5 Wlth ¢vac - 2Xvac (41)

0t =0"=0
Then two of the SL(2, R) generators (§ and &) are dynamically broken since

(67) =~ (30) = (8) # 0 (42)

The ghost number symmetry dzp is unbroken, just as the BRST symmetry s, since no operator
F exists with (sF) = (¢). In fact, setting

0" = Gud™ + ¢ with (47) =0 (4.3)
S(ga = —g% (fabcabcc) (4.4)
it is immediately verified that the action
- a=a 2 73 Tala  =a
S(0,7,¢) = Sym+ Serirp+ /d4:13 <— O:q;z - ;;V;Cp - ¢gf;‘° - igfp + %gfabccbcc
_ % gfebegbes — j_; gfebebes — % gfbegbee

1 2 1
_ 592 (fabczbcc) + Qg2fabccbcc‘fadeadae>

(4.5)
obeys _
s5(0,7,0) = (4.6)
while evidently
5% = (4.7)

"Without loss of generality, we can put ¢ in the 3-direction.
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We focus on the ghost number and BRST symmetry because these are the key ingredients
for the definition of a physical subspace, to have a quartet mechanism, etc.; see e.g. [41].

For vacua other than the pure Overhauser case, problems can arise concerning the BRST
and/or the ghost number symmetry. Consider for example the pure BCS vacuum

" =0
0% = DX yae0® (4.8)
Ea = B}(Vac(sa3

where b and b are a pair of Faddeev-Popov conjugated constants (bb = 1). In this vacuum,
< f“bccbcc> # 0, while sc* = § fabecbee 5o we can expect a problem with the BRST transfor-
mation. Things can even be made worse, since also vacua where ¢® and % get a different
value (up to the ghost number, which is 2, respectively —2), are allowed. In this case, the
ghost number symmetry dgp is also broken.

It seems that the existence of the ghost condensates, different from the Overhauser channel,
could cause serious problems. A pragmatic solution would be to simply choose the Overhauser
vacuum, since one always has to choose a specific vacuum to work with. However, this is not
very satisfactory. The other vacua are in principle as ’'good’ as the Overhauser one.

Let us try to formulate a solution to the problem of the possible BRST /ghost number symme-
try breakdown. Let |Q2) be the Overhauser vacuum, and ’Q> any other vacuum. As already
said, a certain NO transformation U exists, so that

]§> =U|Q) (4.9)

Let Qprst, Qprsr, @Fp, Qs and ()5 be the charges corresponding to respectively s, 5, dpp,
6 and 6. We know that

QprsT|2) = 0 (4.10)
Qrp|Q) = 0 (4.11)
With the relations (BEJ)-(EIT), it is possible to define new charges®

Qprst = UQprstU™ (4.12)

@BEST = UQprsrU™" (4.13)

Qrp = UQppU™! (4.14)

Qs = UQsU™ (4.15)

Q; = UQsU™ (4.16)

Since this is merely a redefinition of its generators, the new charges ([{LI2)-([I6]) are evidently
still obeying the NO algebra ([ZIH). By construction, we have’

@BRST‘Q> = 0 (4.17)
Qrr|?) = 0 (4.18)

8As it is well known, the generators of a symmetry form an adjoint representation.

9@5 for example will be a broken generator. If not, one has Qs |2) = 0, a contradiction.
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As such, we have in any vacuum Q the concept of a nilpotent operator @ BRST. Furthermore,
the physical states ‘phys> are those wherefore

QBRST ’P/H}js> =0 (4.19)
‘P/1;375> # Qprsrl-..) (4.20)
Qrp ‘pES> =0 (4.21)
and are connected to the physical states of the Overhauser case through
’pﬁs> = U |phys) (4.22)

The conclusion is that in any vacuum, the concept of a Faddeev-Popov symmetry exists, just
as a nilpotent BRST transformation. The mere difference is that the functional form of these
operators is no longer the usual one (ZZ). But in principle, the ~ generators are as good
as the original ones to perform the Kugo-Ojima formalism, since this is based on algebraic
properties [A1]. The NO can thus be used to define the physical subspace H,,. of the total
Hilbert space H of all possible states. The action of the NO rotates H, whereby 'Qprsr
physical’ states |phys) are rotated into 'Qprsr physical’ states ‘p/ﬁ;s> = U |phys).

Since we have to choose a certain vacuum, we assume for the rest of the article that we
are in the Overhauser vacuum, the most obvious choice. Notice that this does not imply that
we can simply put the sources L® and 7% equal to zero from the beginning. This corresponds
to the ghost condensation studied in the context of the Maximal Abelian Gauge, originated
in [T, M2, T3], [T4]. Analogously, setting w® equal to zero from the beginning, corresponds to
the BCS channel as originally studied in [T9, 28, 29].

4.2 Global color symmetry

A non-vanishing vacuum expectation value for the color charged field ¢* seems to spoil the
global color symmetry, i.e. the global SU(N) invariance. However, it can be argued that
this global color symmetry breaking is located in the unphysical sector of the Hilbert space.
According to [38, A1), the conserved, global SU(N) current is given by

T = 0,F%, + {Qprsr, D"} (4.23)
while the corresponding color charge reads
Q" — / PrdiFo + / Ba{Qprsr, DIVE) (4.24)

The current (23 is the same in comparison with the one given by the usual Yang-Mills
Lagrangian (i.e. without any condensate); this is immediately verified since the action (B30)
does not contain any new terms with derivatives of the fields.

The first term of EZ) is either ill-defined due to massless particles in its spectrum, or

zero as a volume integral of a total divergence [43]. Thus, if no massless particles show up
(i.e. gluons are massive), (24 reduces to a BRST exact form

Q" = /dgx{QBRSTyngEb} (4.25)
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Henceforth, this color breaking should not be observed in the physical subspace of the Hilbert
space, see e.g. [43] and references therein.

The required absence of massless particles is assured if the gluons are no longer massless.
This is realized by another condensate of mass dimension 2, namely % <A2> in the case of the
Landau gauge. This condensate also lowers the vacuum energy and gives rise to a dynamical
gluon mass, as was shown in 6, 48]. Also lattice simulations support a dynamical gluon mass
A9, B0]. The generalization to the Curci-Ferrari gauge was discussed in [0)].

A rather subtle point in the foregoing is that the well-definedness of ([E2H) should be as-
sured.
4.3 Absence of Goldstone excitations

The conserved current corresponding to the § invariance is given by
- aDabb 1 fabcAabc_ apa (426)
w=C uc+§g pucc =slc A, .
An analogous expression can be derived for the § current
k=5 (cA%) (4.27)

If these continuous § and ¢ symmetries are broken, massless Goldstone states should appear,
according to the Goldstone theorem. However, since the currents are (anti-)BRST exact, those
Goldstone bosons will be part of a BRST quartet, and as such decouple from the physical
spectrum due to the quartet mechanism [A1]. The argument is analogous to the one given in
[T, M2, T3] to explain why there are no physical Goldstone particles present in the case of
SU(2) Yang-Mills in the Maximal Abelian gauge, due to the appearance of the condensate

<63abaacb> )

5 Inclusion of matter fields

So far, we have considered pure Yang-Mills theories, i.e. without matter fields. The present
analysis can be nevertheless straightforwardly extended to the case with quarks included.
This is accomplished by adding to the pure Yang-Mills action Sy s the quark contribution
Sm, given by

S, = / &'z iy DL i (5.1)

with
D!/ =9,6" —igAuT/ (5.2)

The T%7 are the generators of the fundamental representation of SU(N), while Df;] is the
corresponding covariant derivative. The index 4 labels the number of flavours (1 < i < Ny).

The action of the NO transformation on the fermion fields is defined as follows

Swil — —igCaTaIJl/JiJ (53)
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s = —igg T e (5.4)

§1/)H _ —igEaTa1J¢iJ (55)
EEH _ —Z'QEUTQJIEQ (5.6)
M = 6 =06ppy =0 (5:7)
0 = 3 =0ppY =0 (5:8)

Then it is easily checked that the algebra structure (ZIH) is maintained, while the full action
S =Sym+ Sm+ Sar+rp + SLco (5.9)
with Spoo given by (1)), is NO invariant.

The Ward identities in the Appendix A can be generalized (see also [29]). As such, the
renormalizability is assured, while the ghost operators still have the same anomalous dimen-
sion. Of course, the relation p = 2( still holds. Also the discussion in the previous section
can be repeated!?.

For what concerns the explicit evaluation of the effective potential in the Landau gauge,
the absence of a counterterm for the ghost operators (so Zo = 1) is still valid, just as the
relation Z, = Zg_lZglp. Since the quarks are not contributing to W(w, 7, L) at the 1- and
2-loop level, no new divergences appear at the 1- and 2-loop level, hence dpg and dp; are
unchanged in comparison with the quarkless case. Since [46, 47]

22 4 92

2 2 2
G(g = —e¢+|(——=N+=N¢|g"——
( ) © ( 3 3 f) 1672

2 N2 -1 2\?
+ (—@N2+—0NfN+2Nf >g2<g >+

3 3 N 1672
2
13 2 g? 59 5 N2 -1 g°
2 2
= (- =N+:N) L 4 [-ZEN24+ 2NN+ N
7alg’) ( 6 T3 f)167r2+< g TN TN T )(1%2 *
(5.10)
we now find (again for N = 2)
3
e 5.11
Co N, — 13 (5.11)
- 0 (5.12)
M= oN,—13 '
41Ny — 190
_ 5.13
G 96(13 — 2N )2 (5.13)
41N} — 190
= ! (5.14)

48(13 — 2N ;)2

10 Although a dynamical gluon mass has up to now only been calculated for quarkless QCD, the results of
[6, 40, 18] could be generalized to the case with quarks included.
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while the 1-loop effective potential reads

P G PR STEA NS B Gl ST G
W00 =53 (1 29) + Q (m T 3) (5:15)

with x defined as in (B66). The minima can be determined in the same fashion as before,
this leads to
9°N
1672

36

- 1
112 — 29N (5.16)

N=2

6 Prospective view on future work

In this section, we would like to outline some items that deserve further investigation.

e For simplicity, we have restricted ourselves in this article to N = 2. Also, the effective
potential has been determined at the one-loop level, by making use of the MS scheme.
Then, as it is apparent from (ETI6]), the numbers of flavours must be so that 0 < Ny < 3,
in order to have a non-trivial solution. This can be changed if another renormalization
scheme is chosen. There exist several methods to improve perturbation theory and
minimize the renormalization scheme dependence, for example by introducing effective
charges [21), 62] or by employing the principle of minimal sensitivity [53, b4]. Also,
higher order computations are in order to improve results. Evidently, 'real life’ QCD
will need the generalization to N = 3.

e Secondly, we want to comment on the observation that the ghost condensation gives rise
to a tachyonic mass for the gluons in the Curci-Ferrari gauge [55]. Let us consider this
in more detail in the Landau gauge for N = 2. The ghost propagator in the condensed
vacuum (ETI) reads'!

25ab _ <Z>_(3 ab
<aacb>p _ _izﬁ ab=1,2
0

=33 —t
<c c >p = (6.1)
Following [55], one can calculate the gauge boson polarization Hffl’, with this ghost prop-
agator (see Figure 1), and then one finds an induced tachyonic gluon mass. Notice that
this mass is a loop effect. This observation gave rise to the conclusion that gluons ac-
quire a tachyonic mass due to the ghost condensation. It was already recognized in [16]
for the Maximal Abelian gauge that the ghost condensation resulted in a tachyonic mass
for the off-diagonal gluons. In our opinion, this tachyonic mass is more a consequence
of an incomplete treatment than a result in se. The gauge boson polarization was de-
termined with the usual perturbative gluon propagator (i.e. massless gluons). It was
however shown that gluons get a mass trough a non-vanishing vacuum expectation value
for <%A2> in the Landau gauge [6] or <%A2 + aEc> in the Curci-Ferrari gauge [0]. The

LCO treatment for <%A2> gives a Lagrangian similar to (B30). More precisely, a real

112 — 21 — 1, zero otherwise.
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Figure 1: Diagram relevant for the gauge boson polarization.

tree level gluon mass My, is present. It came out that mgy.., ~ 500MeV [6]. Therefore,
the complete procedure to analyze the nature of the induced gluon mass should be that
of taking into account the simultaneous presence of both ghost and gluon condensates,
Le. < f“bCEbcc> and <%A2> (or <%A2 + aEc> in the Curci-Ferrari gauge). The induced
final gluon mass receives contributions from both condensates, as the gluon propagator
gets modified by the condensate <%A2>. The diagram of Figure 1 is thus only part of
the whole set of diagrams contributing to the gluon mass. It is worth mentioning that
a similar mechanism should take place in the Maximal Abelian gauge [16, B9, 40]. In
fact, the mixed gluon-ghost operator <%A2 + aEc> can be consistently introduced also
in this gauge [56, B7).

Summarizing, a complete discussion of the mass generation for gluons would require
a combination the LCO formalism of this article with that of [6, 0] by introducing an
extra source term %K A At for the operator %A2. This will be performed elsewhere,
since the aim of this paper is to discuss the ghost condensates and their role in the
breaking of the NO symmetry.

A third point of interest is the modified infrared behaviour of the propagators due to
the non-vanishing condensates. If one considers the Landau gauge, the Kugo-Ojima
confinement criterion [41] can be translated into an infrared enhancement of the ghost
propagator, i.e. the ghost propagator should be more singular than 1715 [58]. Recently,
much effort has been paid to investigate this criterion (in the Landau gauge) by means
of the Schwinger-Dyson equations, see e.g. [B9, 60} 61 62 63], 64] and references therein.
Defining the gluon and ghost form factors from the Euclidean propagators D,,, (p?) and
G(p?) as

2
D“V(p2) — <5uu_p;]2)1/> ZDp(zp)
2
Gp?) = ZGp(f ) (6.2)

it was shown that in the infrared
Zp(p®) ~ ()™
Za(p®) ~ ()" (6.3)

with a ~ 0.595 [60), 61), 62, 63]. As such, the obtained solutions of the Schwinger-Dyson
equations seem to be compatible with the Kugo-Ojima confinement criterion. Further-
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more, these solutions were also in qualitative agreement with the lattice behaviour (see
e.g. [60]). It would be instructive to investigate to what extent the Schwinger-Dyson
solutions are modified if one would work with the Landau gauge action'?

B (102 B o B (ba(ba
2% ¢*°C  2¢%p

S = Sym+Sarirp+ /d4x (

+ iAa AHa 4 iagfabccbcc o U_agfabcabzc o ﬁgfabcabcc
296 " 29¢ 29¢ 9
1 a Apa 2 1 2 abc=b ¢ 2 1 2 rabc b c rade—d—e
_ g(AMA ) —%g (f cc) +ng cf freete (6.4)

that already incorporates the non-perturbative effects of the ghost condensates and the
gluon condensates, thus also a gluon mass.

Very recently, some results for general covariant gauges concerning the ghost-antighost
condensate (c%c®) were presented in [65] within the Schwinger-Dyson approach. In
the used approximation scheme, it turns out that in case of the linear gauges, no ghost-
antighost condensate seems to exist. It is worth remarking here that the ghost-antighost
condensate (c?c?) is not BRST invariant. It can be combined with the gluon operator A2
to yield the mixed gluon-ghost dimension two operator %A2 + acéc. To our knowledge,
this operator is on-shell BRST invariant only in the Curci-Ferrari and in the Maxi-
mal Abelian gauge'® [56, 57, 66]. In particular, concerning the nonlinear Curci-Ferrari

gauge, the condensate <%A2 + aEc> has been proven to show up in the weak coupling

[0]. However, no definitive conclusion has been reached so far about this condensate
within the Schwinger-Dyson framework [65]. Finally, we notice that the ghost operators
fabechee, fabebee and foeebe we discussed here, were not considered in [G5].

e We have discussed the ghost condensation in the Curci-Ferrari gauge. Originally, the
ghost condensates came to attention in the Maximal Abelian gauge in [T}, 12, T3, T4,
16, 19, 28]. An approach close to the one presented here should be applied to probe the
ghost condensates and their consequences in the Maximal Abelian gauge too. However,
the Maximal Abelian gauge is a bit more tricky to handle, see e.g. [ for some more
comments on this.

e So far, the gauges where the ghost condensation takes place, all have the NO symme-
try. The important question rises if the ghost condensation only takes place in gauges
possessing the NO symmetry? In order to do so, one should first investigate if external
sources for the ghost operators can be introduced without spoiling the renormalizability.
Assuming that the condensation takes place in gauges without the extra NO invariance,
we are however no longer able to relate the different channels by a NO transformation.
Neither would we be able anymore to define e.g. a 'new’ Faddeev-Popov charge in
non-Overhauser like vacua. Therefore, one might speculate that the enlarged symmetry
structure of Yang-Mills theory is necessary to make sense out of the theory, at least if
the ghost condensation occurs.

o) = ¢ <AZA““>. See [0, E0] for the meaning and value of &.
13In which case the color index is restricted to the off-diagonal fields.
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7 Conclusion

In this article, we considered Yang-Mills theory in the Curci-Ferrari gauge and as a limiting
case, in the Landau gauge. These gauges possess a global continuous symmetry, generated
by the NO algebra. This algebra is built out of the (anti-)BRST transformation and of
the SL(2, R) algebra. By combining the local composite operator formalism with the alge-

braic renormalization technique, we have proven that a ghost condensation a la < f“bccbcc>,

f“bCEbEC> (BCS channel) and < f“bCEbcc> (Overhauser channel) occurs. It has been shown
that different vacua are possible, with the Overhauser and BCS vacuum as two special choices.
The ghost condensates (partially) break the NO symmetry. We have discussed the BRST
and the ghost number symmetry in the condensed vacua. We paid attention to the global
SU(N) color symmetry and to the absence of Goldstone bosons in the physical spectrum.
We also briefly discussed the generalization to the case when quark fields are included. We
ended with some comments on future research.

8 Appendix A

8.1 Ward identities for the NO algebra in the Curci-Ferrari gauge

The renormalizability of the Curci-Ferrari gauge is well established [25, B7, 57]. In this Ap-
pendix we show that the introduction of a suitable set of external sources allows to write down
Ward identities for all the generators of the VO algebra. In particular, these Ward identities
will imply that all ghost polynomials f®¢clc¢, fabegbee, fabebe® have the same anomalous
dimension.

In order to write down the functional identities for the NO algebra, we need to introduce
three more external sources QZ, ﬁz, ﬁﬁ with dimensions (2,2,1), coupled to the nonlinear
BRST and anti-BRST variations of the gauge field Aj.

Seat = 55 / d'z (ﬂ““Afj + %0““0;) (8.1)

Notice that the coefficient 7 is allowed by power counting, since the term J*#9J}; has dimension
2. The generators of the NO algebra act on 2, ﬁz, v, as

sz?Z = ﬁz (8.2)

sﬁz = SQZ =0

50, = Q) (8.3)
SQZ = Eﬁz =0
o, = _ﬁu (8.4)
69, = 09, =0
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and

M, = -0 (8.5)
0% = 308 =0

Therefore, for Se,; one gets

Sea = [ dte (~Q D QDY 4 QY — 9D+ gy (D) ) (8.6)

JFrom this expression, it can be seen that the parameter 7 is needed to account for the be-
havior of the two-point Green function <(Dzbcb(x)) (D,ﬁdéd(y)) >, which is deeply related to
the Kugo-Ojima criterion. In other words, the coefficient v is the LCO parameter for this
Green function.

We can now translate the whole NO algebra into functional identities, which will be the
starting point for the algebraic characterization of the allowed counterterm. It turns out thus
that, in the Curci-Ferrari gauge, the complete action X
Y = Sym+Serirp+ Spco + Seat
1
= -2 /d4azFﬁyF"“” + s?/d% ( A%t + (N 4+ ne®

_ 1 Y

AL+ S ALA 4 g ) (8.7)
is constrained by the following identities:

e the Slavnov-Taylor identity

S(®) =0 (8.8)
2\ 0% (6% 5%
4 a) YA _
= [ <<6Q‘W e ) 5z * <5La < > 5
IS 0% 0% 0%
= +QMW> (8.9)

e the anti-Slavnov-Taylor identity

SX)=0 (8.10)
)Y 6% 6%
4 a o= al 74
/ e ((59‘”‘ 79“) 5Au (5 ok ) 5z
—(b“ ) ) POREDY 52+La5_2
dw? oo 577 obe oA
W 02 >
aph
&7 — Qe ﬂw) (8.11)
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e the 6 Ward identity
WE)=0 (8.12)

with

5 /6% 5% 5%
wE) = / d <Caﬁ * <5L“ - 47&) o T2

5% 0L 4 0%
R ¢ 1
dwr T 5 “59;3) (8.13)
e the § Ward identity
W(E) =0 (8.14)
— 8Y /6% oY oY
_ 4 —a = _ a) 7~ a
wE) = / @ <C 5 <5Ta L ) 5~ 5
) SR> SR>
+LO = A S “552) (8.15)

8.2 Algebraic characterization of the invariant counterterm in the Curci-
Ferrari gauge

The most general local invariant counterterm compatible with both Slavnov-Taylor and anti-
Slavnov-Taylor identities (), (8I) can be written as

¢ = —% /d4$FﬁyF“W + BB/ diz (alx\“ca + aon®A\* + agn?c®
5T+ asVf AT+ A AL + %030%) (8.16)

where o, a1, as, as, a4, as, ag, a7 are free parameters and B, B denote the linearized nilpotent

operators
DR 0% a\ 6 (oY 5
_ 4 _ ay v _ al) _—_
5 = [d (5,4;; T <5QW VQM) sz * <5La < > 5

0% ¢ ) 0 0 0 0 =a 0
+E6La+b E"‘T W—Fw 5)\a+QN5792> (817)
and
— ) o ) )y L Y
— 4 _ s 0 _ (2= _ La> L2 =7
b / e (Mg For (m"“ i “> SAS (w L) 5e s
_(ba+ 0% o a)i_@i_é_Ei_é_Ei
swa Y ) Sea T Seaswe  onedbe  obe one
) ) 5
a _a Y Oap
L = — o) (8.18)
;From the § and 6 Ward identities (812), (814 it follows that
a3 = ax (8.19)
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so that the final expression for (BIf) becomes
= —% /d4:nFlfVF“”” + Bg/ d*z (alx\“ca + aan® A\ + antc®
+ 2t 4 a0 A AG + %19,‘30““) (8.20)

The coefficients o, a1, as, a4, as, ag, a7y are easily seen to correspond to a multiplicative
renormalization of the coupling constant g, of the gauge and LCO parameters «, (, 7y, of
the fields and external sources. In particular, the coefficients ¢ and as are related to the
renormalization of the gauge coupling constant g and of the gauge field AZ, as it is apparent
from

BB / B9 A% = Ny (8.21)

where N4 stands for the invariant counting operator

5 5 0
= [ d* —Q—— - Q) — — " — 22
Na= [ dte ( HEAL SR 0*‘503) 75y (8.22)

The coefficient a4 corresponds to the renormalization of the gauge parameter «, indeed

o5,
4 _
BB / dugeret = — == (8.23)

The coeflicient as is associated to the renormalization of the LCO parameter ¢, which follows
from

BB / don A\ = —NY (8.24)

5 5
/d4 < S Mga TN 5_) (8.25)

The coefficient a; is related to the anomalous dimensions of all ghost operators, namely

with

BB / d'z (N + 79T%) = NS (8.26)

where

1) 1) ) 1)
4 70— a a a__—
/d ( 5Le VT o TN o T s T e
P R B )
b % —C ﬁ —C (50‘1) 2 8C (827)

The renormalization of the LCO parameter « is given by the coefficient a7, as can be seen

from
7] 4 1 a au) _ _/ 4
BB/d x (279;179 = | = d*x ”6A (8.28)

Finally, the anomalous dimension of the ghost ¢® and the antighost ¢* are obtained from the
coefficient ag

__ 1
BB / d'a (§A‘“‘AZ> _ ALY (8.29)
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with

1.5 1.6 5 5 5 5
_ 4 s - e a ” _ r1a _a _,.a
Ne = /dx<caa+ stV e T s Y s
3 5 3 4 P
a0 2pa 20— +2 :
ol &7) o +<C (8.30)

(From expressions ([B27)) and (RB30) one sees that all sources L%, 7%, and w® renormalize in
the same way, which means that all composite ghost polynomials fa¢cbee, fobegbee, fabeghee
have indeed the same anomalous dimension. This result is a consequence of the relationship
(BT which, of course, stems from the existence of the NO algebra.

9 Appendix B

In order to construct the 1-loop effective potential, we need the values of (g, po, (1 and p;.
These can be calculated as soon we know the divergences proportional to w? and L7 when
the generating functional corresponding to the action (Bl is calculated. In principle, it
is sufficient to calculate the divergences proportional to w? since the NO invariance leads to
p = 2(. Therefore, we can restrict ourselves to the diagrams with only the source w connected.
Let us write

5p = dpog® + dprg* + - (9.1)
For N =2 and o = 0, the ghost propagator reads

wb ‘_p45ab +p2geabcwc _ g2wawb
<C ¢ > =t 2 (% & o202 (9.2)
P p* (p* + g?w?)

while the gluon propagator is given by

a pb _ _iéab o PuPv

The ghost-antighost-gluon vertex equals

ge™p,, (9.4)

The relevant vacuum bubbles'# are shown in Figure 2. At 1-loop, we find a contribution to
W(w, T, L), given by

i G 0+ 05

Performing a Wick rotation'® and employing the M S scheme, this leads to a divergence given
by
I
32712 e
The diagrams containing a counterterm are not shown.

151 one would like to avoid a Wick rotation, one could have started immediately from the Euclidean Yang-
Mills action.

(9.6)

28



- ~ - q ~
e AN e AN
/ \ / \
Il \l 1cla q_p al\b/
b'H v'c
\ / 2 \ /
\ / \ /
AN / N /
~ - ~ p -
~ p - ~ 5 -

Figure 2: Vacuum bubbles up to 2-loop order, giving divergences proportional to w?.

Hence
11

4n2 e
At 2-loops, the contribution to W(w, 7, L) is obtained by computing the second diagram of
Figure 2, yielding

5po = — (9.7)

1 o [ dip  diq —i5e (P —a)ulp—q)
g - 26abceabc/ o9 pqui< L — m ,,)
2" 2m)d 2m)? P =g \ (p—q)?
. 45bc 2 bce e . 45bc 2 bce e 2. b, c
i p + gp“e . QWW % 4 + 9q°¢€ . —gww (9.8)
P*(p* + g?w?) ¢*(q* + g?w?)
Working out the color algebra, one finds
_ / ddp dd [ Pty (g (= aulp - q)y>
2 (p—q? " (p—q)?
—6p’q —2gw(p +q' = p*¢?) (9.9)
P*¢(p* + g°w?)(¢* + g°w?) ’

This integral Z has been calculated in two steps: first all tensor integrals have been reduced
to a combination of scalar master integrals, applying simple algebraic rearrangements of
the scalar products which appear in the numerator of the integrand; all master integrals
are vacuum integrals, i.e. with vanishing external momentum; they have been replaced by
their explicit expression in terms of special functions [67] and expanded in powers of €. The
calculation has been done with the Mathematica packages DiagFrpand and ProcessDiagram.
We find 42 6 17 w

= (1967)2 <€—2 % l ‘Z + ﬁmte> (9.10)
We also have to take the counterterm information into account'®. Since there is no coun-
terterm oc w®qf®¢ec in the Landau gauge, the only counterterm that will contribute at the

order we are working, is

02,c"9,015°°c? (9.11)
where [A7]
_3 92N 1 12

16The corresponding diagram looks like the ﬁrst one of Figure 2.
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This leads to a contribution

dp
1.2 - 4, 2 2
(—2zcg ) <—z/ an) In (p + g“w )) (9.13)
Or
2 2 4 2
o1 2] | gw _é gw  Jw _12_2 § gw .
[—2:247] l —3%2( S 2 3)1 - (16772)2( ooty wite) (9.14)

Hence, the complete 2-loop contribution to W(w, 7, L) yields

402 6

g 1 .
=———|——= — — + finit 1
O + @) (16772)2< S g+ fin e) (9.15)
A good internal check of the calculations is that the terms proportional to % In %—“2’ are cancelled.

Finally, we find that
1 1 12
oppr=——|-+—= 9.16

P 6m2)? <€ " €2> (919
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