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Abstract

We analyze the ghost condensates
〈
fabccbcc

〉
,
〈
fabccbcc

〉
and

〈
fabccbcc

〉
in Yang-Mills

theory in the Curci-Ferrari gauge. By combining the local composite operator formalism
with the algebraic renormalization technique, we are able to give a simultaneous discussion
of
〈
fabccbcc

〉
,
〈
fabccbcc

〉
and

〈
fabccbcc

〉
, which can be seen as playing the role of the BCS,

respectively Overhauser effect in ordinary superconductivity. The Curci-Ferrari gauge
exhibits a global continuous symmetry generated by the Nakanishi-Ojima (NO) algebra.
This algebra includes, next to the (anti-)BRST transformation, a SL(2, R) subalgebra.
We discuss the dynamical symmetry breaking of the NO algebra through these ghost
condensates. Particular attention is paid to the Landau gauge, a special case of the
Curci-Ferrari gauge.
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1 Introduction

Vacuum condensates play an important role in quantum field theory. They can be used to
parametrize some non-perturbative effects. If one wants to attach a physical meaning to a
certain condensate in case of a gauge theory, it should evidently be gauge invariant. Two

well known examples in the context of QCD are the gluon condensate
〈
F 2

µν

〉
and the quark

condensate 〈qq〉.

Recently, there was a growing interest for a mass dimension 2 condensate in (quarkless)
QCD in the Landau gauge, see e.g. [1, 2, 3, 4, 5, 6]. Unfortunately, no local gauge in-
variant operator with mass dimension 2 exists. However, a non-local gauge invariant di-
mension 2 operator can be constructed by minimizing A2 along each gauge orbit, namely

A2
min ≡ (V T )−1 minU

∫
d4x

(
AU

µ

)2
with V T the space time volume and U a generic SU(N)

transformation. This operator is related to the Gribov region as well as the so-called funda-

mental modular region (FMR), which is the set of absolute minima of
∫
d4x

(
AU

µ

)2
[7, 8, 9].

In particular, in the Landau gauge ∂µA
µ = 0, it turned out that A2

min
reduces to the local

operator A2. This gives a meaning to the condensate
〈
A2
〉
. In [6], an effective action was

constructed in the weak coupling for the
〈
A2
〉

condensate by means of the local composite
operator technique (LCO) and it was shown that

〈
A2
〉 6= 0 is dynamically favoured since it

lowers the vacuum energy. Due to this condensate, the gluons achieved a mass.

In this article, we will discuss other condensates of mass dimension 2 [10], namely pure

ghost condensates of the type
〈
fabccbcc

〉
,
〈
fabccbcc

〉
and

〈
fabccbcc

〉
. Historically, these con-

densates came to attention in [11, 12, 13, 14] in the context of SU(2) Yang-Mills theory in
the Maximal Abelian gauge. This is a partial non-linear gauge fixing which requires the in-
troduction of a four ghost interaction term for consistency. A decomposition, by means of a
Hubbard-Stratonovich auxiliary field, similar to the one of the 4-fermion interaction of the
Gross-Neveu model [15], allowed to construct a 1-loop effective potential, leading to a non-

trivial minimum for the ghost condensate corresponding to
〈
fabccbcc

〉
. It was recognized in

[11, 12, 13] that this condensate signals the breakdown of a global SL(2, R) symmetry of the
SU(2) Maximal Abelian gauge model. The ghost condensate was used to find a mass for the
off-diagonal gluons, and thereby a certain evidence for the Abelian dominance was established
[14]. It has been shown since then that the ghost condensate gives in fact a tachyonic mass [16].

It is worth mentioning that a simple decomposition of the 4-fermion interaction might cause
troubles with the renormalizability beyond the 1-loop order. For instance, in the case of
the Gross-Neveu model, this procedure requires the introduction of ad hoc counterterms to
maintain finiteness [17, 18]. A similar problem can be expected with the 4-ghost interaction.
The LCO procedure gave an outcome to this problem [17].

Another issue that deserves clarification is the fact that with a different decomposition, differ-
ent ghost condensates appear [19], corresponding to the Faddeev-Popov charged condensates〈
fabccbcc

〉
and

〈
fabccbcc

〉
. The existence of several channels for the ghost condensation has a

nice analogy in the theory of superconductivity, known as the BCS versus Overhauser effect.
The BCS channel corresponds to the charged particle-particle and hole-hole pairing [20, 21],
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while the Overhauser channel to the particle-hole pairing [22, 23]. In the present case, the

Faddeev-Popov charged condensates
〈
fabccbcc

〉
and

〈
fabccbcc

〉
would correspond to the BCS

channel, while
〈
fabccbcc

〉
to the Overhauser channel. The question is whether one of these

effects would be favoured. A simultaneous discussion of both effects is necessary to find out
if one vacuum is more stable than the other.

It is appealing that by now the ghost condensates have been observed also in a class of
non-linear generalized covariant gauges [24, 25], the so-called Curci-Ferrari gauges1, again
by the decomposition of a 4-ghost interaction [28]. The Curci-Ferrari gauge has the Landau
gauge as a special case. Although the Landau gauge lacks a 4-ghost interaction, it has been
shown that the ghost condensation also takes place in this gauge [29]. Evidently, this was
not possible by the decomposition of a 4-point interaction. However, the combination of the
LCO method [6, 30] with the algebraic renormalization formalism [31, 32] allowed for a clean
treatment of the ghost condensation in the Landau gauge.

It seems thus that the ghost condensation takes place in a variety of gauges: the Landau
gauge, the Curci-Ferrari gauge and the Maximal Abelian gauge. It is known that the Lan-
dau gauge and Curci-Ferrari gauge exhibit a global continuous symmetry, generated by the
so-called Nakanishi-Ojima algebra [33, 34, 35, 36, 37, 38]. This algebra contains, next to
the BRST and anti-BRST transformations, a SL(2, R) subalgebra generated by the Faddeev-
Popov ghost number and 2 other operators, δ and δ. Moreover, δ and δ mutually transform
the ghost operators fabccbcc, fabccbcc and fabccbcc into each other. It is then apparent that the
ghost condensation can appear in several channels like the BCS and Overhauser channel, and
that a non-vanishing vacuum expectation value for the ghost operators indicates a breakdown
of this SL(2, R) symmetry.

Recently, it has been shown that the same2 NO invariance of the Landau and Curci-Ferrari
gauge can be maintained in the Maximal Abelian gauge for any value of N [39]. Apparently,
an intimate connection exists between the NO symmetry and the appearance of the ghost
condensates, since all gauges where the ghost condensates has been proven to occur, have the
global NO invariance.

The aim of this article is to provide an answer to the aforementioned issues. We will discuss the
Curci-Ferrari gauge. For explicit calculations, we will restrict ourselves to the Landau gauge
for SU(2). The presented general arguments are however neither depending on the choice of
the gauge parameter, nor on the value of N . The paper is organized as follows. In section
2, we show that it is possible to introduce a set of external sources for the ghost operators,
according to the LCO method, and this without spoiling the NO invariance. Employing the
algebraic renormalization technique [31, 32], it can then be checked that the proposed action
can be renormalized. In section 3, the effective potential for the ghost condensates is evalu-
ated. By contruction, this effective potential, incorporating the BCS as well as the Overhauser
channel, is finite up to any order and obeys a homogeneous renormalization group equation.
Next, in section 4, we pay attention to the dynamical symmetry breaking of the NO algebra
due to the ghost condensates. Because of the SL(2, R) invariance of the presented framework,

1Referring to the massive Curci-Ferrari model that has the same gauge fixing terms [26, 27].
2The SL(2, R) symmetry discussed in [11, 12, 13, 35] is only acting non-trivially on the off-diagonal fields.
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it becomes clear that a whole class of equivalent, non-trivial vacua exist. The Overhauser
and the BCS vacuum are important special cases. Notice that a nonvanishing condensate〈
fabccbcc

〉
6= 0 could seem to pose a problem for the Faddeev-Popov ghost number symmetry

and for the BRST symmetry, two basic properties of a quantized gauge theory. However, we
shall be able to show that one can define a nilpotent BRST and a Faddeev-Popov symmetry
in any possible ghost condensed vacuum. The existence of the NO symmetry plays a key
role in this. Since the ghost condensates carry a color index, we also spend some words on
the global SU(N) color symmetry. Here, we can provide an argument that, thanks to the

existence of the condensate
〈
A2
〉

and of its generalization
〈

1
2A

2 + αcc
〉

in the Curci-Ferrari

gauge [40], the breaking of the color symmetry, induced by the ghost condensates, should be
located in the unphysical part of the Hilbert space. Furthermore, we argue why no physical
Goldstone particles should appear by means of the quartet mechanism [41]. Section 5 handles
the generalization of the results to the case with quarks included. In section 6, we give an
outline of future research where the gluon and ghost condensates can play a role. We end
with conclusions in section 7. Technical details are collected in the Appendices A and B.

2 The set of external sources for both BCS and Overhauser

channel

2.1 Introduction of the LCO sources

For a thorough introduction to the local composite operator (LCO) formalism and to the
algebraic renormalization technique, the reader is referred to [6, 30], respectively [31].

According to the LCO method, the first step in the analysis of the ghost condensation in
both channels is the introduction of a suitable system of external sources. Generalizing the
construction done in the pure BCS case [29], it turns out that the simultaneous presence of
both channels is achieved by considering the following BRST invariant external action

SLCO = s

∫
d4x

(
Laca + λa

(
ba − gfabccbcc

)
+ ζηaLa − 1

2
ηagfabccbcc +

1

2
ρλaωa − ωaca

)

=

∫
d4x

(
1

2
Lagfabccbcc − 1

2
τagfabccbcc + ηagfabcbbcc + ζτaLa

− ωagfabccbcc + λagfabcbbcc − 1

2
λag2fabccbf cmncmcn +

1

2
ρωaωa

)

(2.1)

The BRST transformation s is defined for the fields Aa
µ, ca, ca, ba as

sAa
µ = −Dab

µ c
b

sca =
g

2
fabccbcc

sca = ba

sba = 0 (2.2)

with
Dab

µ = ∂µδ
ab + gfacbAc

µ (2.3)
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the adjoint covariant derivative.

The external sources La, τa, λa, ωa, ηa transform as

sηa = τa , sτa = 0 , (2.4)

sλa = ωa , sωa = 0 ,

sLa = 0

La ηa τa λa ωa

Dimension 2 1 2 1 2

Gh. Number −2 1 2 −1 0

(2.5)

¿From expression (2.1) one sees that the sources La, τa couple to the ghost operators gfabccbcc,
gfabccbcc of the BCS channel, while ωa accounts for the Overhauser channel gfabccbcc. As
far as the BRST invariance is the only invariance required for the external action (2.1), the
LCO parameters ζ and ρ are independent. However, it is known that both the Landau and
the Curci-Ferrari gauge display a larger set of symmetries, giving rise to the NO algebra
[24, 25, 33, 34, 35, 36, 37, 38, 39]. It is worth remarking that the whole NO algebra can be
extended also in the presence of the external action SLCO, provided that the two parameters
ζ and ρ obey the relationship

ρ = 2ζ (2.6)

In other words, the requirement of invariance of SLCO under the whole NO algebra allows
for a unique parameter in expression (2.1). In order to introduce the generators of the NO
algebra, let us begin with the anti-BRST transformation s

sAa
µ = −Dab

µ c
b

sca = −ba + gfabccbcc

sca =
g

2
fabccbcc

sba = −gfabcbbcc (2.7)

Extending s to the external LCO sources as

sηa = −ωa , sτa = 0 (2.8)

sλa = La , sωa = 0

sLa = 0

one easily verifies that
{s, s} = ss+ ss = 0 (2.9)

Furthermore, the requirement of invariance of SLCO under s fixes the parameter ρ = 2ζ,
namely

sSLCO = 0 ⇒ ρ = 2ζ (2.10)

This is best seen by observing that, when ρ = 2ζ, the whole action SLCO can be written as

SLCO = ss

∫
d4x (λaca + ζλaηa + ηaca) (2.11)
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Concerning now the other generators δ and δ of the NO algebra, they can be introduced as
follows

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0

δLa = 2ωa

δωa = −τa

δλa = −ηa

δτa = δηa = 0 (2.12)

and

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0

δωa = La

δτa = −2ωa

δηa = −λa

δLa = δλa = 0 (2.13)

It holds that
δSLCO = δSLCO = 0 (2.14)

The operators s, s, δ, δ and the Faddeev-Popov ghost number operator δFP give rise to the
NO algebra

s2 = 0 , s2 = 0

{s, s} = 0 , [δ, δ] = δFP ,

[δ, δFP] = −2δ, [δ, δFP] = 2δ

[s, δFP] = −s , [s, δFP] = s ,

[s, δ] = 0 , [s, δ] = 0 ,

[s, δ] = −s , [s, δ] = −s (2.15)

In particular, δFP , δ, δ generate a SL(2, R) subalgebra. We remark that the NO algebra
can be established as an exact invariance of SLCO only when both channels are present. It is
easy to verify indeed that setting to zero the external sources corresponding to one channel
will imply the loss of the NO algebra. This implies that a complete discussion of the ghost
condensates needs sources for the BCS as well as for the Overhauser channel.

Let us also give, for further use, the expressions of the gauge fixed action in the presence
of the LCO external sources for the Curci-Ferrari gauge.

S = SY M + SGF+FP + SLCO

= −1

4

∫
d4xF a

µνF
aµν + ss

∫
d4x

(
1

2
Aa

µA
aµ + λaca + ζλaηa + ηaca − α

2
caca

)

(2.16)
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with

SGF+FP =

∫
d4x

(
ba∂µA

aµ +
α

2
baba + ca∂µDab

µ c
b − α

2
gfabcbacbcc − α

8
g2fabcf cdecacbcdce

)

(2.17)

The renormalizability of the action (2.16) is discussed in the Appendix A.

The Curci-Ferrari gauge has the Landau gauge, α = 0, as interesting special case, see for
example [40]. One sees that the difference between the two actions is due to the term αcaca,
which gives rise to a quartic ghost self interaction absent in the Landau gauge. The whole set
of NO invariances can be translated into functional identities which ensures the renormaliz-
ability of the model. In particular, concerning the counterterm contributions δLL

agfabccbcc,
δτ τ

agfabccbcc and δωω
agfabccbcc , it is shown in the Appendix A that

δL = δτ = δω ≡ δ2 (2.18)

Consequently, the operators gfabccbcc, gfabccbcc and gfabccbcc turn out to have the same
anomalous dimension for any α. As expected, this result is a consequence of the presence of
the NO symmetry. Moreover, in the Landau gauge, δ2 ≡ 0 due to the nonrenormalization
properties of the Landau gauge [31]. In [42], one can find an explicit proof that δ2 = 0.

2.2 A note on the choice of the hermiticity properties of the Faddeev-

Popov ghosts

With our choice of ghosts c, respectively anti-ghosts c, the hermiticity assignment

c† = c

c† = −c (2.19)

is obeyed. This implies that c and c are independent degrees of freedom and by a redefinition
ic = c′, we have real (anti-)ghost fields c and c′. Another assignment that is used sometimes,
reads

c† = c (2.20)

As it was explored in e.g. [38, 41], the former assignment is the correct one for a generic gauge.
However, based on the additional ghost-anti-ghost symmetry in the Landau gauge, both
formulations are equivalent. Moreover, this equivalence, which is related to the existence of the
SL(2, R) symmetry, can be maintained if the Landau gauge is generalized to the Curci-Ferrari

gauge [43]. Since we are discussing the existence of
〈
fabccbcc

〉
,
〈
fabccbcc

〉
and

〈
fabccbcc

〉
,

which break the SL(2, R) symmetry, the equivalence between the real formulation (2.19) and

the complex one (2.20) might be altered. For example, if
〈
fabccbcc

〉
6=
〈
fabccbcc

〉
, the ghost-

anti-ghost symmetry is lost, as well as the usual ghost number symmetry. Throughout this
article, we will use the prescription (2.19). We will return to the issue of the ghost number
symmetry later in this article.
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3 Effective potential for the ghost condensates

3.1 General considerations

Let us proceed with the construction of the effective potential for the ghost condensates in
the Curci-Ferrari gauge. To decide which channel is favoured, we have to consider the 2
channels at once. We shall also treat the two LCO parameters ρ and ζ for the moment as
being independent and verify the relationship (2.1). Setting to zero the external sources η
and λ, we start from the action

S = SY M + SGF+FP +

∫
d4x

[
−ωagfabccbcc +

1

2
ρωaωa

+
1

2
Lagfabccbcc − 1

2
τagfabccbcc + ζτaLa

]
(3.1)

Following [6, 30], the divergences proportional to Lτ are cancelled by the counterterm δζτL,
and the divergences proportional to ω2 are cancelled by the counterterm δρ

2 ω
2. Considering

the bare Lagrangian associated to (3.1), we have

cb =
√
Zcc cb =

√
Zcc (3.2)

Ab =
√
ZAA (3.3)

gb = µε/2Zgg (3.4)

Lb = µ−ε/2 Z2

ZgZc
L τb = µ−ε/2 Z2

ZgZc
τ ωb = µ−ε/2 Z2

ZgZc
ω (3.5)

where Z2 = 1 + δ2 (see (2.18)).
Furthermore,

ζbτ
a
b L

a
b = µ−ε (ζ + δζ) τaLa (3.6)

1

2
ρbω

a
bω

a
b =

1

2
µ−ε (ρ+ δρ)ωaωa (3.7)

where it is understood that we are working with dimensional regularization in d = 4 − ε
dimensions. The above equations allow to derive the renormalization group equation of ζ and
ρ

µ
dζ

dµ
= 2γ(g2)ζ + δζ(g

2) (3.8)

µ
dρ

dµ
= 2γ(g2)ρ+ δρ(g

2) (3.9)

where γ(g2) denotes the anomalous dimension of the ghost operators gfabccbcc, gfabccbcc and
gfabccbcc, given by

γ(g2) = µ
d

dµ
ln

Z2

ZgZc
(3.10)

δζ and δρ are defined as

δζ(g
2) =

(
ε− 2γ̂(g2) − β(g2)

∂

∂g2
− αγα(g2)

∂

∂α

)
δζ (3.11)

δρ(g
2) =

(
ε− 2γ̂(g2) − β(g2)

∂

∂g2
− αγα(g2)

∂

∂α

)
δρ (3.12)
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where β(g2) = µdg2

dµ is the usual running of the coupling constant, in d dimensions given by

β(g2) = −εg2 − 22

3
g2 g

2N

16π2
− 68

3
g2

(
g2N

16π2

)2

+ · · · (3.13)

while γα(g2) = µ
α

dα
dµ denotes the running of the gauge parameter α. We do not write the

possible α dependence of the appearing renormalization group functions; for the explicit cal-
culations in section 3.2, we will restrict ourselves to the Landau gauge. Therefore, we also do
not write down the explicit value of γα(g2) since αγα(g2) ≡ 0 for α = 0.

γ̂(g2) denotes the anomalous dimension of the sources ω, τ and L. γ(g2) and γ̂(g2) are
related by

γ̂(g2) =
ε

2
− γ(g2) (3.14)

and therefore, the equations (3.11)-(3.12) can be rewritten as

δζ(g
2) =

(
2γ(g2) − β(g2)

∂

∂g2
− αγα(g2)

∂

∂α

)
δζ (3.15)

δρ(g
2) =

(
2γ(g2) − β(g2)

∂

∂g2
− αγα(g2)

∂

∂α

)
δρ (3.16)

Notice that in the equations (3.8)-(3.9), the parameter ε has immediately been set equal to
zero, this is allowed because all considered quantities are finite for ε→ 0.

Since we have introduced 2 novel parameters3, we have a problem of uniqueness. However,
this can be solved by noticing that ζ and ρ can be chosen to be a function of g2, such that
if g2 runs according to (3.13), ζ(g2) and ρ(g2) will run according to (3.8), respectively (3.9).
Explicitly, ζ(g2) and ρ(g2) are the solution of the differential equations

(
β(g2)

d

dg2
+ αγα(g2)

d

dα

)
ζ(g2) = 2γ(g2)ζ(g2) + δζ(g

2) (3.17)

(
β(g2)

d

dg2
+ αγα(g2)

d

dα

)
ρ(g2) = 2γ(g2)ρ(g2) + δρ(g

2) (3.18)

The integration constants of the solution of (3.17)-(3.18) can be put to zero;this eliminates
independent parameters and assures multiplicative renormalizability

ζ(g2) + δζ(g2, ε) = Zζ(g
2, ε)ζ(g2) (3.19)

ρ(g2) + δρ(g2, ε) = Zρ(g
2, ε)ρ(g2) (3.20)

Notice that the n-loop knowledge of ζ(g2) and ρ(g2) will need the (n+ 1)-loop knowledge of
β(g2), γ(g2), δζ(g

2) and δρ(g
2) [40]. The generating functional W(ω, τ, L), defined as

eiW(ω,τ,L) =

∫
[DΦ]eiS(ω,τ,L) (3.21)

with S(ω, τ, L) given by (3.1) and Φ denoting the relevant fields, will now obey a homogeneous
renormalization group equation [6, 30].

3In fact, only 1 novel parameter is introduced, since ρ = 2ζ.
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It is not difficult to see that δζ(g
2), δρ(g

2) and ζ(g2), ρ(g2) will be of the form

δζ(g
2) = δζ,0g

2 + δζ,1g
4 + · · · (3.22)

δρ(g
2) = δρ,0g

2 + δρ,1g
4 + · · · (3.23)

ζ(g2) = ζ0 + ζ1g
2 + · · · (3.24)

ρ(g2) = ρ0 + ρ1g
2 + · · · (3.25)

Taking the functional derivatives of W(ω, τ, L) with respect to the sources ωa, τa and La, we
obtain a finite vacuum expectation value for the composite operators, namely

δW(ω, τ, L)

δωa

∣∣∣∣
ω=0,τ=0,L=0

= −g
〈
fabccbcc

〉
(3.26)

δW(ω, τ, L)

δτa

∣∣∣∣
ω=0,τ=0,L=0

= −g
2

〈
fabccbcc

〉
(3.27)

δW(ω, τ, L)

δLa

∣∣∣∣
ω=0,τ=0,L=0

=
g

2

〈
fabccbcc

〉
(3.28)

Since the source terms appear quadratically, we seem to have lost an energy interpretation.
However, this can be dealt with by introducing a pair of Hubbard-Stratonovich fields (σa, σa)
for the τL term, and a Hubbard-Stratonovich field φa for the ω2 term. For the functional
generator W(ω, τ, L), we then get

eiW(ω,τ,L) =

∫
[dΦ]e

iS(σ,σ,φ)+i
∫

d4x

(
φa

g
ωa+ σa

g
La+ σ

g

a
τa

)

(3.29)

where the action S(σ, σ, φ) is given by

S(σ, σ, φ) = SY M + SGF+FP +

∫
d4x

(
−σ

aσa

g2ζ
− φaφa

2g2ρ
+

σa

2gζ
gfabccbcc

− σa

2gζ
gfabccbcc − φa

gρ
gfabccbcc − 1

2ρ
g2
(
fabccbcc

)2
+

1

4ζ
g2fabccbccfadecdce

)

(3.30)

Notice also that in expression (3.29), the sources ω , τ , L are now linearly coupled to the
fields φ, σ, σ, allowing thus for the correct energy interpretation of the corresponding effective
action. Taking the functional derivatives gives the relations

〈φa〉 = −g2
〈
fabccbcc

〉
(3.31)

〈σa〉 =
g2

2

〈
fabccbcc

〉
(3.32)

〈σa〉 = −g
2

2

〈
fabccbcc

〉
(3.33)

where all vacuum expectation values are now calculated with the action (3.30).

Summarizing, we have constructed a new, multiplicatively renormalizable Yang-Mills action
(3.30), incorporating the possible existence of ghost condensates. As such, if a non-trivial
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vacuum is favoured, we can perturb around a more stable vacuum than the trivial one. The
action (3.30) is explicitly NO invariant4. The corresponding effective action V (σ, σ, φ) obeys
a homogeneous renormalization group equation.

To find out whether the groundstate effectively favours non-vanishing ghost condensates,
we will calculate the 1-loop effective potential. For the sake of simplicity, we will restrict our-
selves to the case of SU(2) Yang-Mills theories in the Landau gauge (α = 0). In this context,
we remark that one can prove that the vacuum energy will be gauge parameter independent
order by order. This proof is completely analoguous to the one presented in [40], and is based
on the fact that the derivative with respect to α of the action (2.1) is a BRST exact form plus
terms proportional to the sources, which equal zero in the minima of the effective potential.
As such, the usual proof of gauge parameter independence can be used [31].

3.2 Calculation of the 1-loop effective potential for N = 2 in the Landau

gauge

We will determine the effective potential [44] with the background field method [45]. Let us
define the 6 × 6 matrix

Mab =


 −σcǫcab

ζ ∂2δab − ǫabcφc

ρ

−∂2δab − ǫabcφc

ρ
σcǫcab

ζ


 (3.34)

where ǫabc are the structure constants of SU(2). Then the effective potential up to one loop
is easily worked out, yielding5

V1(σ, σ, φ) =
σaσa

g2ζ
+
φaφa

2g2ρ
+
i

2
ln detMab (3.35)

or

V1(σ, σ, φ) =
σaσa

g2ζ
+
φaφa

2g2ρ
−
∫

ddk

(2π)d
ln

(
k6 + k2

(
σaσa

ζ2
+
φaφa

ρ2

)
+
ǫabcφaσbσc

ρζ2

)
(3.36)

with k Euclidean.

We notice that the mass dimension 6 operator ǫabcφaσbσc enters the expression for the effec-
tive potential. We shall however show that this operator plays no role in the determination
of the minimum, which is a solution of





∂V
∂σa = σa

g2ζ − ∫ ddk
(2π)d

k2 σa

ζ2 + ǫabcφbσc

ρζ2

k6+k2

(
σaσa

ζ2 + φaφa

ρ2

)
+ ǫabcφaσbσc

ρζ2

= 0

∂V
∂σa = σa

g2ζ − ∫ ddk
(2π)d

k2 σa

ζ2 + ǫabcφcσb

ρζ2

k6+k2

(
σaσa

ζ2 + φaφa

ρ2

)
+ ǫabcφaσbσc

ρζ2

= 0

∂V
∂φa = φa

g2ρ − ∫ ddk
(2π)d

2k2 φa

ρ2 + ǫabcσbσc

ρζ2

k6+k2

(
σaσa

ζ2 + φaφa

ρ2

)
+ ǫabcφaσbσc

ρζ2

= 0

(3.37)

4The NO variations of the σa, σa and φa fields can be determined immediately from (3.31)-(3.33).
5We do not write the counterterms explicitly.
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Let us assume that (φa
∗, σ

a
∗ , σ

a
∗) is a solution of (3.37). Obviously, φa

∗ = 0, σa
∗ = 0, σa

∗ = 0 is a
solution, corresponding with the trivial vacuum energy E = 0.

Let us now assume that at least one of the field configurations is non-zero. If it occurs
that σa

∗ = σa
∗ = (0, 0, 0), then necessarily φa

∗ 6= (0, 0, 0) and it can be immediately checked
that the equations (3.37) are reduced to

1

g2ζ
− 1

ζ2

∫
ddk

(2π)d

1

k4 +
(

σa
∗σa

∗

ζ2 + φa
∗φa

∗

ρ2

) = 0 (3.38)

Next, we consider the case that σa
∗ 6= (0, 0, 0) and/or σa

∗ 6= (0, 0, 0). Without loss of generality,
we can consider σa

∗ 6= (0, 0, 0). Consider then the first equation of (3.37).

σa
∗

g2ζ
−
∫

ddk

(2π)d

k2 σa
∗

ζ2 + ǫabcφb
∗σc

∗

ρζ2

k6 + k2
(

σa
∗σa

∗

ζ2 + φa
∗φa

∗

ρ2

)
+ ǫabcφa

∗σb
∗σc

∗

ρζ2

= 0 (3.39)

By contracting the above equation with σa
∗ , we find

σa
∗σ

a
∗

g2ζ
−
∫

ddk

(2π)d

k2 σa
∗σa

∗

ζ2

k6 + k2
(

σa
∗σa

∗

ζ2 + φa
∗φa

∗

ρ2

)
+ ǫabcφa

∗σb
∗σc

∗

ρζ2

= 0 (3.40)

or, since σa
∗σ

a
∗ 6= 0

1

g2ζ
−
∫

ddk

(2π)d

k2

ζ2

k6 + k2
(

σa
∗σa

∗

ζ2 + φa
∗φa

∗

ρ2

)
+ ǫabcφa

∗σb
∗σc

∗

ρζ2

= 0 (3.41)

Inserting (3.41) into (3.39), one learns that

ǫabcφb
∗σ

c
∗

ρζ2

∫
ddk

(2π)d

1

k6 + k2
(

σa
∗σa

∗

ζ2 + φa
∗φa

∗

ρ2

)
+ ǫabcφa

∗σb
∗σc

∗

ρζ2

= 0 (3.42)

Notice that the integral in (3.42) is UV finite. If the integral of (3.42) is non-vanishing, we
must have that

ǫabcφb
∗σ

c
∗ = 0 (3.43)

Evidently, we then also have that
ǫabcφa

∗σ
b
∗σ

c
∗ = 0 (3.44)

Expression (3.41) can then also be combined with the second and third equation of (3.37) to
show that

ǫabcφb
∗σ

c
∗ = 0 (3.45)

and
ǫabcσb

∗σ
c
∗ = 0 (3.46)

Henceforth, we conclude that all contributions coming from the dimension 6 operator ǫabcφbσcσa

are in fact not relevant for the determination of the minimum configuration (φa
∗, σ

a
∗ , σ

a
∗). It is

sufficient to solve the following gap equation to search for the non-trivial minimum

1

g2ζ
− 1

ζ2

∫
ddk

(2π)d

1

k4 +
(

σaσa

ζ2 + φaφa

ρ2

) = 0 (3.47)
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In fact, this is the gap equation corresponding to the minimization of the potential (3.36) with
ǫabcφaσbσc put equal to zero from the beginning, in which case the 1-loop potential reduces
to

V1(σ, σ, φ)ǫ
abcφaσbσc=0 =

σaσa

g2ζ0

(
1 − ζ1

ζ0
g2
)

+
φaφa

2ρ0g2

(
1 − ρ1

ρ0
g2
)

+
1

32π2

(
σaσa

ζ2
0

+
φaφa

ρ2
0

)
ln

σaσa

ζ2
0

+ φaφa

ρ2
0

µ4 − 3


 (3.48)

Moreover, we have explicitly verified that that the potential V1, for ǫabcφaσbσc 6= 0, does in
fact admit the solution ǫabcφaσbσc = 0 for the minimum.

It remains to show that the integral of (3.42) is non-vanishing for a non-trivial vacuum con-
figuration (Evac 6= 0). We define

a =
σa
∗σ

a
∗

ζ2
+
φa
∗φ

a
∗

ρ2

b =
ǫabcφa

∗σ
b
∗σ

c
∗

ρζ2
(3.49)

and consider the integral

∫
d4k

(2π)4
1

k6 + ak2 + b
=

∫
dΩ

(2π)4

∫ ∞

0

k3dk

k6 + ak2 + b
(3.50)

For a = 0 and b = 0, (3.50) is vanishing, but then we also have that Evac = 0.
Via the substitution x = k2, one finds

∫
k3dk

k6 + ak2 + b
=

1

2

∫ ∞

0

xdx

x3 + ax+ b
(3.51)

This integral is always positive for a > 0. For b = 0, this is immediately clear. For b 6= 0, we
perform a partial integration to find

1

2

∫ ∞

0

xdx

x3 + ax+ b
=

x2

4 (x3 + ax+ b)

∣∣∣∣∣

∞

0

+
1

4

∫ ∞

0

(
3x2 + a

)
x2

(x3 + ax+ b)2
dx =

1

4

∫ ∞

0

(
3x2 + a

)
x2

(x3 + ax+ b)2
dx

(3.52)
For a > 0, the integral (3.52) is also positive. Consider now the function F (a, b), defined by

F (a, b) =

∫ ∞

0

xdx

x3 + ax+ b
(3.53)

We already know that, for a > 0 and fixed b = b∗, F (a, b∗) > 0. Furthermore

∂F (a, b)

∂a
= −

∫ ∞

0

x2dx

(x3 + ax+ b)2
< 0 (3.54)

meaning that the function F (a, b∗) decreases for increasing a. Assuming that F (a, b) has
a zero at (a0, b0), then we should have that F (a, b0) becomes more negative as a increases,
which contradicts the fact that F (a, b0) > 0 for a > 0. Therefore, the function F (a, b) cannot
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become zero and the integral in (3.42) never vanishes for a non-trivial vacuum configuration.

It remains to calculate ζ0, ζ1, ρ0 and ρ1. One finds (see the Appendix B)

δζ = − g2

8π2

1

ε
+

g4

(16π2)2

(
1

2ε
+

6

ε2

)
+ · · · (3.55)

δρ = − g2

4π2

1

ε
+

g4

(16π2)2

(
1

ε
+

12

ε2

)
+ · · · (3.56)

Since in the Landau gauge Z2 = 1 and Zc = Z−1
g Z

−1/2
A (see e.g. [42]), we have

γ(g2) =
1

2
µ
d

dµ
lnZA ≡ γA(g2) (3.57)

where γA(g2) is the anomalous dimension of the gluon field, given by [46, 47]

γA(g2) = −13

6

g2N

16π2
− 59

8

(
g2N

16π2

)2

+ . . . (3.58)

Henceforth, we find for (3.15)-(3.16)

δζ(g
2) = − g2

8π2
+

g4

256π4
+ · · · (3.59)

δρ(g
2) = − g2

4π2
+

g4

128π4
+ · · · (3.60)

Another good internal check of the calculations6 is that the renormalization group functions
(3.59)-(3.60) are indeed finite.

Finally, solving the equations (3.17)-(3.18) leads to

ζ0 = − 3

13
(3.61)

ρ0 = − 6

13
(3.62)

ζ1 = − 95

624π2
(3.63)

ρ1 = − 95

312π2
(3.64)

We indeed find that ρ = 2ζ. We already knew this from the NO invariance (see the
Appendix A), and we find that the MS scheme preserves this symmetry. It can also be
understood from a diagrammatical point of view. Consider (3.1), first with only the source ω
connected, and subsequently with only the sources τ , L connected. For each diagram giving a
divergence proportional to ω2 in the former case, there exists a similar diagram giving a diver-
gence proportional to τL in the latter case. More precisely, when the appropriate symmetry
factor is taken into account, it will hold that

δρ = 2δζ (3.65)
6See also the Appendix B.
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Combining this with (3.11)-(3.12) and (3.17)-(3.18), precisely gives the relation (2.6).

Notice that, due to the identity (2.6), the effective potential V (σ, σ, φ) of (3.35) can be
written in terms of 2 combinations of the fields σ, σ and φ, namely

χ2 = σaσa +
φaφa

4

χ̂ = ǫabcφaσbσc (3.66)

As we have shown, χ̂ does not influence the value of the minimum. So, it is sufficient to
consider the potential with χ̂ = 0. (3.48) then becomes

V1(χ)χ̂=0 =
χ2

g2ζ0

(
1 − ζ1

ζ0
g2
)

+
1

32π2

χ2

ζ2
0

(
ln

χ2

ζ2
0µ

4 − 3

)
(3.67)

Recalling (2.12) and (3.31), we find

δφ = −2σ (3.68)

δσ = 0 (3.69)

δσ = φ (3.70)

Consequently

δχ2 = φaσa +
(2φa)(−2σa)

4
= 0

δχ̂ = 0 (3.71)

A similar conclusion exists for δ and δFP . Said otherwise, χ and χ̂ are SL(2, R) invariants. Let
us make a comparison with the effective potential V (ϕ2) of the O(N) vector model with field
ϕ = (ϕ1, . . . , ϕN ). This potential is a function of the O(N) invariant norm ϕ2 = ϕ2

1+· · ·+ϕ2
N .

Choosing a certain direction for ϕ breaks the O(N) invariance. In the present case, choosing a
certain direction for χ breaks the SL(2, R) symmetry. However, the situation with the ghost
condensates is a bit more complicated than a simple breakdown of the SL(2, R).

Before we come to the discussion of the symmetry breaking, let us calculate the minima
of (3.67). We can use the renormalization group equation to sum leading logarithms and put

µ4 = χ2

ζ2
0

. The equation of motion, dV
dχ = 0, has, next to the perturbative one χ = 0, which

corresponds to a local maximum, a non-trivial solution, given by

g2N

16π2

∣∣∣∣∣
N=2

=
9

28
≈ 0.321 (3.72)

where it is understood that g2 ≡ g2(µ =
√
χ/|ζ0|). Using the 1-loop expression

g2(µ) =
3

11N

1

ln µ2

Λ2

MS

(3.73)

we obtain

χvac = 0.539Λ2
MS

(3.74)

Evac = −0.017Λ4
MS

(3.75)
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¿From (3.72), it follows that the expansion parameter is relatively small. A qualitatively
meaningful minimum, (3.74), is thus retrieved. The resulting vacuum energy (3.75) is nega-
tive, implying that the ground state favours the formation of the ghost condensates.

4 Non-trivial vacuum configurations and dynamical breaking

of the NO symmetry

In this section, we discuss the consequences for the NO symmetry of a non-trivial vacuum
expectation value of the ghost operators fabccbcc, fabccbcc and/or fabccbcc. The arguments
are general and applicable for all N and for all choices of the Curci-Ferrari gauge parameter
α.

4.1 BCS, Overhauser or a combination of both?

Since the action (3.30) is NO invariant, each possible vacuum state can be transformed into
another under the action of the NO symmetry. A special choice of a possible vacuum is the
pure Overhauser vacuum, determined by7

{
φa = φvacδ

a3 with φvac = 2χvac

σa = σa = 0
(4.1)

Then two of the SL(2, R) generators (δ and δ) are dynamically broken since

〈δσ〉 = −
〈
δσ
〉

= 〈φ〉 6= 0 (4.2)

The ghost number symmetry δFP is unbroken, just as the BRST symmetry s, since no operator
F exists with 〈sF〉 = 〈φ〉. In fact, setting

φa = φvacδ
a3 + φ̃a with

〈
φ̃a
〉

= 0 (4.3)

sφ̃a = −g2s
(
fabccbcc

)
(4.4)

it is immediately verified that the action

S(σ, σ, φ̃) = SY M + SGF+FP +

∫
d4x

(
−σ

aσa

g2ζ
− φ2

vac

2g2ρ
− φ̃3φvac

g2ρ
− φ̃aφ̃a

2g2ρ
+

σa

2gζ
gfabccbcc

− σa

2gζ
gfabccbcc − φ̃a

gρ
gfabccbcc − φvac

gρ
gf3bccbcc

− 1

2ρ
g2
(
fabccbcc

)2
+

1

4ζ
g2fabccbccfadecdce

)

(4.5)

obeys
sS(σ, σ, φ̃) = 0 (4.6)

while evidently
s2 = 0 (4.7)

7Without loss of generality, we can put φa in the 3-direction.
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We focus on the ghost number and BRST symmetry because these are the key ingredients
for the definition of a physical subspace, to have a quartet mechanism, etc.; see e.g. [41].

For vacua other than the pure Overhauser case, problems can arise concerning the BRST
and/or the ghost number symmetry. Consider for example the pure BCS vacuum





φa = 0
σa = bχvacδ

a3

σa = bχvacδ
a3

(4.8)

where b and b are a pair of Faddeev-Popov conjugated constants (bb = 1). In this vacuum,〈
fabccbcc

〉
6= 0, while sca = g

2f
abccbcc, so we can expect a problem with the BRST transfor-

mation. Things can even be made worse, since also vacua where σa and σa get a different
value (up to the ghost number, which is 2, respectively −2), are allowed. In this case, the
ghost number symmetry δFP is also broken.

It seems that the existence of the ghost condensates, different from the Overhauser channel,
could cause serious problems. A pragmatic solution would be to simply choose the Overhauser
vacuum, since one always has to choose a specific vacuum to work with. However, this is not
very satisfactory. The other vacua are in principle as ’good’ as the Overhauser one.

Let us try to formulate a solution to the problem of the possible BRST/ghost number symme-

try breakdown. Let |Ω〉 be the Overhauser vacuum, and
∣∣∣Ω̃
〉

any other vacuum. As already

said, a certain NO transformation U exists, so that
∣∣∣Ω̃
〉

= U |Ω〉 (4.9)

Let QBRST , QBRST , QFP , Qδ and Qδ be the charges corresponding to respectively s, s, δFP ,
δ and δ. We know that

QBRST |Ω〉 = 0 (4.10)

QFP |Ω〉 = 0 (4.11)

With the relations (4.9)-(4.11), it is possible to define new charges8

Q̃BRST = UQBRSTU−1 (4.12)

Q̃BRST = UQBRSTU−1 (4.13)

Q̃FP = UQFPU−1 (4.14)

Q̃δ = UQδU−1 (4.15)

Q̃δ = UQδU−1 (4.16)

Since this is merely a redefinition of its generators, the new charges (4.12)-(4.16) are evidently
still obeying the NO algebra (2.15). By construction, we have9

Q̃BRST

∣∣∣Ω̃
〉

= 0 (4.17)

Q̃FP

∣∣∣Ω̃
〉

= 0 (4.18)
8As it is well known, the generators of a symmetry form an adjoint representation.
9Q̃δ for example will be a broken generator. If not, one has Qδ |Ω〉 = 0, a contradiction.
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As such, we have in any vacuum Ω̃ the concept of a nilpotent operator Q̃BRST . Furthermore,

the physical states
∣∣∣p̃hys

〉
are those wherefore

Q̃BRST

∣∣∣p̃hys
〉

= 0 (4.19)
∣∣∣p̃hys

〉
6= Q̃BRST |. . .〉 (4.20)

Q̃FP

∣∣∣p̃hys
〉

= 0 (4.21)

and are connected to the physical states of the Overhauser case through
∣∣∣p̃hys

〉
= U |phys〉 (4.22)

The conclusion is that in any vacuum, the concept of a Faddeev-Popov symmetry exists, just
as a nilpotent BRST transformation. The mere difference is that the functional form of these
operators is no longer the usual one (2.2). But in principle, the ∼ generators are as good
as the original ones to perform the Kugo-Ojima formalism, since this is based on algebraic
properties [41]. The NO can thus be used to define the physical subspace Hphys of the total
Hilbert space H of all possible states. The action of the NO rotates H, whereby ’QBRST

physical’ states |phys〉 are rotated into ’Q̃BRST physical’ states
∣∣∣p̃hys

〉
≡ U |phys〉.

Since we have to choose a certain vacuum, we assume for the rest of the article that we
are in the Overhauser vacuum, the most obvious choice. Notice that this does not imply that
we can simply put the sources La and τa equal to zero from the beginning. This corresponds
to the ghost condensation studied in the context of the Maximal Abelian Gauge, originated
in [11, 12, 13, 14]. Analogously, setting ωa equal to zero from the beginning, corresponds to
the BCS channel as originally studied in [19, 28, 29].

4.2 Global color symmetry

A non-vanishing vacuum expectation value for the color charged field φa seems to spoil the
global color symmetry, i.e. the global SU(N) invariance. However, it can be argued that
this global color symmetry breaking is located in the unphysical sector of the Hilbert space.
According to [38, 41], the conserved, global SU(N) current is given by

J a
µ = ∂νF

a
µν + {QBRST ,D

ab
µ c

b} (4.23)

while the corresponding color charge reads

Qa =

∫
d3x∂iF

a
0i +

∫
d3x{QBRST ,D

ab
0 c

b} (4.24)

The current (4.23) is the same in comparison with the one given by the usual Yang-Mills
Lagrangian (i.e. without any condensate); this is immediately verified since the action (3.30)
does not contain any new terms with derivatives of the fields.

The first term of (4.24) is either ill-defined due to massless particles in its spectrum, or
zero as a volume integral of a total divergence [43]. Thus, if no massless particles show up
(i.e. gluons are massive), (4.24) reduces to a BRST exact form

Qa =

∫
d3x{QBRST ,D

ab
0 c

b} (4.25)
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Henceforth, this color breaking should not be observed in the physical subspace of the Hilbert
space, see e.g. [43] and references therein.

The required absence of massless particles is assured if the gluons are no longer massless.
This is realized by another condensate of mass dimension 2, namely 1

2

〈
A2
〉

in the case of the
Landau gauge. This condensate also lowers the vacuum energy and gives rise to a dynamical
gluon mass, as was shown in [6, 48]. Also lattice simulations support a dynamical gluon mass
[49, 50]. The generalization to the Curci-Ferrari gauge was discussed in [40].

A rather subtle point in the foregoing is that the well-definedness of (4.25) should be as-
sured.

4.3 Absence of Goldstone excitations

The conserved current corresponding to the δ invariance is given by

kµ = caDab
µ c

b +
1

2
gfabcAa

µc
bcc = s

(
caAa

µ

)
(4.26)

An analogous expression can be derived for the δ current

kµ = s
(
caAa

µ

)
(4.27)

If these continuous δ and δ symmetries are broken, massless Goldstone states should appear,
according to the Goldstone theorem. However, since the currents are (anti-)BRST exact, those
Goldstone bosons will be part of a BRST quartet, and as such decouple from the physical
spectrum due to the quartet mechanism [41]. The argument is analogous to the one given in
[11, 12, 13] to explain why there are no physical Goldstone particles present in the case of
SU(2) Yang-Mills in the Maximal Abelian gauge, due to the appearance of the condensate〈
ǫ3abcacb

〉
.

5 Inclusion of matter fields

So far, we have considered pure Yang-Mills theories, i.e. without matter fields. The present
analysis can be nevertheless straightforwardly extended to the case with quarks included.
This is accomplished by adding to the pure Yang-Mills action SY M the quark contribution
Sm, given by

Sm =

∫
d4xψ

iI
iγµDIJ

µ ψiJ (5.1)

with
DIJ

µ = ∂µδ
IJ − igAa

µT
aIJ (5.2)

The T aIJ are the generators of the fundamental representation of SU(N), while DIJ
µ is the

corresponding covariant derivative. The index i labels the number of flavours (1 ≤ i ≤ Nf ).

The action of the NO transformation on the fermion fields is defined as follows

sψiI = −igcaT aIJψiJ (5.3)
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sψ
iI

= −igψiJ
T aJIca (5.4)

sψiI = −igcaT aIJψiJ (5.5)

sψ
iI

= −igψiJ
T aJIca (5.6)

δψ = δψ = δFPψ = 0 (5.7)

δψ = δψ = δFPψ = 0 (5.8)

Then it is easily checked that the algebra structure (2.15) is maintained, while the full action

S = SY M + Sm + SGF+FP + SLCO (5.9)

with SLCO given by (2.1), is NO invariant.

The Ward identities in the Appendix A can be generalized (see also [29]). As such, the
renormalizability is assured, while the ghost operators still have the same anomalous dimen-
sion. Of course, the relation ρ = 2ζ still holds. Also the discussion in the previous section
can be repeated10.

For what concerns the explicit evaluation of the effective potential in the Landau gauge,
the absence of a counterterm for the ghost operators (so Z2 = 1) is still valid, just as the

relation Zc = Z−1
g Z

−1/2
A . Since the quarks are not contributing to W(ω, τ, L) at the 1- and

2-loop level, no new divergences appear at the 1- and 2-loop level, hence δρ0 and δρ1 are
unchanged in comparison with the quarkless case. Since [46, 47]

β(g2) = −εg2 +

(
−22

3
N +

4

3
Nf

)
g2 g2

16π2

+

(
−68

3
N2 +

20

3
NfN + 2Nf

N2 − 1

N

)
g2

(
g2

16π2

)2

+ . . .

γA(g2) =

(
−13

6
N +

2

3
Nf

)
g2

16π2
+

(
−59

8
N2 +

5

2
NfN +Nf

N2 − 1

N

)(
g2

16π2

)2

+ . . .

(5.10)

we now find (again for N = 2)

ζ0 =
3

2Nf − 13
(5.11)

ρ0 =
6

2Nf − 13
(5.12)

ζ1 =
41Nf − 190

96(13 − 2Nf )π2
(5.13)

ρ1 =
41Nf − 190

48(13 − 2Nf )π2
(5.14)

10Although a dynamical gluon mass has up to now only been calculated for quarkless QCD, the results of
[6, 40, 48] could be generalized to the case with quarks included.
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while the 1-loop effective potential reads

V1(χ) =
χ2

g2ζ0

(
1 − ζ1

ζ0
g2
)

+
1

32π2

χ2

ζ2
0

(
ln

χ2

ζ2
0µ

4
− 3

)
(5.15)

with χ defined as in (3.66). The minima can be determined in the same fashion as before,
this leads to

g2N

16π2

∣∣∣∣∣
N=2

=
36

112 − 29Nf
(5.16)

6 Prospective view on future work

In this section, we would like to outline some items that deserve further investigation.

• For simplicity, we have restricted ourselves in this article to N = 2. Also, the effective
potential has been determined at the one-loop level, by making use of the MS scheme.
Then, as it is apparent from (5.16), the numbers of flavours must be so that 0 ≤ Nf ≤ 3,
in order to have a non-trivial solution. This can be changed if another renormalization
scheme is chosen. There exist several methods to improve perturbation theory and
minimize the renormalization scheme dependence, for example by introducing effective
charges [51, 52] or by employing the principle of minimal sensitivity [53, 54]. Also,
higher order computations are in order to improve results. Evidently, ’real life’ QCD
will need the generalization to N = 3.

• Secondly, we want to comment on the observation that the ghost condensation gives rise
to a tachyonic mass for the gluons in the Curci-Ferrari gauge [55]. Let us consider this
in more detail in the Landau gauge for N = 2. The ghost propagator in the condensed
vacuum (4.1) reads11

〈
cacb

〉
p

= −i
p2δab − φ3

ρ0
ǫab

p4 +
(

φ3

ρ0

)2 a, b = 1, 2

〈
c3c3

〉
p

=
−i
p2

(6.1)

Following [55], one can calculate the gauge boson polarization Πab
µν with this ghost prop-

agator (see Figure 1), and then one finds an induced tachyonic gluon mass. Notice that
this mass is a loop effect. This observation gave rise to the conclusion that gluons ac-
quire a tachyonic mass due to the ghost condensation. It was already recognized in [16]
for the Maximal Abelian gauge that the ghost condensation resulted in a tachyonic mass
for the off-diagonal gluons. In our opinion, this tachyonic mass is more a consequence
of an incomplete treatment than a result in se. The gauge boson polarization was de-
termined with the usual perturbative gluon propagator (i.e. massless gluons). It was
however shown that gluons get a mass trough a non-vanishing vacuum expectation value

for
〈

1
2A

2
〉

in the Landau gauge [6] or
〈

1
2A

2 + αcc
〉

in the Curci-Ferrari gauge [40]. The

LCO treatment for
〈

1
2A

2
〉

gives a Lagrangian similar to (3.30). More precisely, a real

11ǫ12 = −ǫ21 = 1, zero otherwise.
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Figure 1: Diagram relevant for the gauge boson polarization.

tree level gluon mass mgluon is present. It came out that mgluon ∼ 500MeV [6]. Therefore,
the complete procedure to analyze the nature of the induced gluon mass should be that
of taking into account the simultaneous presence of both ghost and gluon condensates,

i.e.
〈
fabccbcc

〉
and

〈
1
2A

2
〉

(or
〈

1
2A

2 + αcc
〉

in the Curci-Ferrari gauge). The induced

final gluon mass receives contributions from both condensates, as the gluon propagator

gets modified by the condensate
〈

1
2A

2
〉
. The diagram of Figure 1 is thus only part of

the whole set of diagrams contributing to the gluon mass. It is worth mentioning that
a similar mechanism should take place in the Maximal Abelian gauge [16, 39, 40]. In

fact, the mixed gluon-ghost operator
〈

1
2A

2 + αcc
〉

can be consistently introduced also

in this gauge [56, 57].

Summarizing, a complete discussion of the mass generation for gluons would require
a combination the LCO formalism of this article with that of [6, 40] by introducing an
extra source term 1

2KA
a
µA

µa for the operator 1
2A

2. This will be performed elsewhere,
since the aim of this paper is to discuss the ghost condensates and their role in the
breaking of the NO symmetry.

• A third point of interest is the modified infrared behaviour of the propagators due to
the non-vanishing condensates. If one considers the Landau gauge, the Kugo-Ojima
confinement criterion [41] can be translated into an infrared enhancement of the ghost
propagator, i.e. the ghost propagator should be more singular than 1

p2 [58]. Recently,

much effort has been paid to investigate this criterion (in the Landau gauge) by means
of the Schwinger-Dyson equations, see e.g. [59, 60, 61, 62, 63, 64] and references therein.
Defining the gluon and ghost form factors from the Euclidean propagators Dµν(p2) and
G(p2) as

Dµν(p
2) =

(
δµν − pµpν

p2

)
ZD(p2)

p2

G(p2) =
ZG(p2)

p2
(6.2)

it was shown that in the infrared

ZD(p2) ∼ (p2)2a

ZG(p2) ∼ (p2)−a (6.3)

with a ≈ 0.595 [60, 61, 62, 63]. As such, the obtained solutions of the Schwinger-Dyson
equations seem to be compatible with the Kugo-Ojima confinement criterion. Further-
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more, these solutions were also in qualitative agreement with the lattice behaviour (see
e.g. [60]). It would be instructive to investigate to what extent the Schwinger-Dyson
solutions are modified if one would work with the Landau gauge action12

S = SY M + SGF+FP +

∫
d4x

(
− ϕ2

2g2ξ
− σaσa

g2ζ
− φaφa

2g2ρ

+
ϕ

2gξ
Aa

µA
µa +

σa

2gζ
gfabccbcc − σa

2gζ
gfabccbcc − φa

gρ
gfabccbcc

− 1

8ξ

(
Aa

µA
µa
)2

− 1

2ρ
g2
(
fabccbcc

)2
+

1

4ζ
g2fabccbccfadecdce

)
(6.4)

that already incorporates the non-perturbative effects of the ghost condensates and the
gluon condensates, thus also a gluon mass.

Very recently, some results for general covariant gauges concerning the ghost-antighost
condensate 〈caca〉 were presented in [65] within the Schwinger-Dyson approach. In
the used approximation scheme, it turns out that in case of the linear gauges, no ghost-
antighost condensate seems to exist. It is worth remarking here that the ghost-antighost
condensate 〈caca〉 is not BRST invariant. It can be combined with the gluon operator A2

to yield the mixed gluon-ghost dimension two operator 1
2A

2 + αcc. To our knowledge,
this operator is on-shell BRST invariant only in the Curci-Ferrari and in the Maxi-
mal Abelian gauge13 [56, 57, 66]. In particular, concerning the nonlinear Curci-Ferrari

gauge, the condensate
〈

1
2A

2 + αcc
〉

has been proven to show up in the weak coupling

[40]. However, no definitive conclusion has been reached so far about this condensate
within the Schwinger-Dyson framework [65]. Finally, we notice that the ghost operators
fabccbcc, fabccbcc and fabccbcc we discussed here, were not considered in [65].

• We have discussed the ghost condensation in the Curci-Ferrari gauge. Originally, the
ghost condensates came to attention in the Maximal Abelian gauge in [11, 12, 13, 14,
16, 19, 28]. An approach close to the one presented here should be applied to probe the
ghost condensates and their consequences in the Maximal Abelian gauge too. However,
the Maximal Abelian gauge is a bit more tricky to handle, see e.g. [40] for some more
comments on this.

• So far, the gauges where the ghost condensation takes place, all have the NO symme-
try. The important question rises if the ghost condensation only takes place in gauges
possessing the NO symmetry? In order to do so, one should first investigate if external
sources for the ghost operators can be introduced without spoiling the renormalizability.
Assuming that the condensation takes place in gauges without the extra NO invariance,
we are however no longer able to relate the different channels by a NO transformation.
Neither would we be able anymore to define e.g. a ’new’ Faddeev-Popov charge in
non-Overhauser like vacua. Therefore, one might speculate that the enlarged symmetry
structure of Yang-Mills theory is necessary to make sense out of the theory, at least if
the ghost condensation occurs.

12〈ϕ〉 = g

2

〈
Aa

µAµa
〉
. See [6, 40] for the meaning and value of ξ.

13In which case the color index is restricted to the off-diagonal fields.
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7 Conclusion

In this article, we considered Yang-Mills theory in the Curci-Ferrari gauge and as a limiting
case, in the Landau gauge. These gauges possess a global continuous symmetry, generated
by the NO algebra. This algebra is built out of the (anti-)BRST transformation and of
the SL(2, R) algebra. By combining the local composite operator formalism with the alge-

braic renormalization technique, we have proven that a ghost condensation à la
〈
fabccbcc

〉
,

〈
fabccbcc

〉
(BCS channel) and

〈
fabccbcc

〉
(Overhauser channel) occurs. It has been shown

that different vacua are possible, with the Overhauser and BCS vacuum as two special choices.
The ghost condensates (partially) break the NO symmetry. We have discussed the BRST
and the ghost number symmetry in the condensed vacua. We paid attention to the global
SU(N) color symmetry and to the absence of Goldstone bosons in the physical spectrum.
We also briefly discussed the generalization to the case when quark fields are included. We
ended with some comments on future research.

8 Appendix A

8.1 Ward identities for the NO algebra in the Curci-Ferrari gauge

The renormalizability of the Curci-Ferrari gauge is well established [25, 47, 57]. In this Ap-
pendix we show that the introduction of a suitable set of external sources allows to write down
Ward identities for all the generators of the NO algebra. In particular, these Ward identities
will imply that all ghost polynomials fabccbcc, fabccbcc, fabccbcc have the same anomalous
dimension.

In order to write down the functional identities for the NO algebra, we need to introduce
three more external sources Ωa

µ, Ω
a
µ, ϑa

µ with dimensions (2, 2, 1), coupled to the nonlinear
BRST and anti-BRST variations of the gauge field Aa

µ.

Sext = ss

∫
d4x

(
ϑaµAa

µ +
γ

2
ϑaµϑa

µ

)
(8.1)

Notice that the coefficient γ is allowed by power counting, since the term ϑaµϑa
µ has dimension

2. The generators of the NO algebra act on Ωa
µ, Ω

a
µ, ϑa

µ as

sϑa
µ = Ω

a
µ (8.2)

sΩ
a
µ = sΩa

µ = 0

sϑa
µ = −Ωa

µ (8.3)

sΩa
µ = sΩ

a
µ = 0

δΩa
µ = −Ω

a
µ (8.4)

δϑa
µ = δΩa

µ = 0

24



and

δΩ
a
µ = −Ωa

µ (8.5)

δϑa
µ = δΩa

µ = 0

Therefore, for Sext one gets

Sext =

∫
d4x

(
−ΩµaDab

µ c
b − Ω

µa
Dab

µ c
b + γΩµaΩ

a
µ − ϑaµDab

µ b
b + gfabcϑaµ

(
Dbd

µ c
d
)
cc
)

(8.6)

¿From this expression, it can be seen that the parameter γ is needed to account for the be-

havior of the two-point Green function
〈(
Dab

µ c
b(x)

) (
Dcd

ν c
d(y)

)〉
, which is deeply related to

the Kugo-Ojima criterion. In other words, the coefficient γ is the LCO parameter for this
Green function.

We can now translate the whole NO algebra into functional identities, which will be the
starting point for the algebraic characterization of the allowed counterterm. It turns out thus
that, in the Curci-Ferrari gauge, the complete action Σ

Σ = SY M + SGF+FP + SLCO + Sext

= −1

4

∫
d4xF a

µνF
aµν + ss

∫
d4x

(
λaca + ζλaηa + ηaca

−α
2
caca + ϑaµAa

µ +
1

2
Aa

µA
aµ +

γ

2
ϑaµϑa

µ

)
(8.7)

is constrained by the following identities:

• the Slavnov-Taylor identity
S(Σ) = 0 (8.8)

S(Σ) =

∫
d4x

((
δΣ

δΩaµ
− γΩ

a
µ

)
δΣ

δAa
µ

+

(
δΣ

δLa
− ζτa

)
δΣ

δca

+ba
δΣ

δca
+ τa δΣ

δηa
+ ωa δΣ

δλa
+ Ω

a
µ

δΣ

δϑa
µ

)
(8.9)

• the anti-Slavnov-Taylor identity
S(Σ) = 0 (8.10)

S(Σ) =

∫
d4x

((
δΣ

δΩ
aµ + γΩa

µ

)
δΣ

δAa
µ

−
(
δΣ

δτa
− ζLa

)
δΣ

δca

−
(
ba +

δΣ

δωa
− 2ζωa

)
δΣ

δca
− δΣ

δηa

δΣ

δba
+ La δΣ

δλa

−ωa δΣ

δηa
− Ωaµ δΣ

δϑaµ

)
(8.11)
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• the δ Ward identity
W(Σ) = 0 (8.12)

with

W(Σ) =

∫
d4x

(
ca
δΣ

δca
+

(
δΣ

δLa
− ζτa

)
δΣ

δba
+ 2ωa δΣ

δLa

−τa δΣ

δωa
− ηa δΣ

δλa
− Ω

a
µ

δΣ

δΩa
µ

)
(8.13)

• the δ Ward identity
W(Σ) = 0 (8.14)

W(Σ) =

∫
d4x

(
ca
δΣ

δca
−
(
δΣ

δτa
− ζLa

)
δΣ

δba
− 2ωa δΣ

δτa

+La δΣ

δωa
− λa δΣ

δηa
− Ωa

µ

δΣ

δΩ
a
µ

)
(8.15)

8.2 Algebraic characterization of the invariant counterterm in the Curci-

Ferrari gauge

The most general local invariant counterterm compatible with both Slavnov-Taylor and anti-
Slavnov-Taylor identities (8.8), (8.10) can be written as

Σc = −σ
4

∫
d4xF a

µνF
aµν + BB

∫
d4x

(
a1λ

aca + a2η
aλa + a3η

aca

+
a4

2
caca + a5ϑ

a
µA

aµ +
a6

2
AaµAa

µ +
a7

2
ϑa

µϑ
aµ
)

(8.16)

where σ, a1, a2, a3, a4, a5, a6, a7 are free parameters and B, B denote the linearized nilpotent
operators

B =

∫
d4x

(
δΣ

δAa
µ

δ

δΩaµ
+

(
δΣ

δΩaµ
− γΩ

a
µ

)
δ

δAa
µ

+

(
δΣ

δLa
− ζτa

)
δ

δca

+
δΣ

δca
δ

δLa
+ ba

δ

δca
+ τa δ

δηa
+ ωa δ

δλa
+ Ω

a
µ

δ

δϑa
µ

)
(8.17)

and

B =

∫
d4x

(
δΣ

δAa
µ

δ

δΩ
a
µ

+

(
δΣ

δΩ
aµ + γΩa

µ

)
δ

δAa
µ

−
(
δΣ

δτa
− ζLa

)
δ

δca
− δΣ

δca
δ

δτa

−
(
ba +

δΣ

δωa
− 2ζωa

)
δ

δca
− δΣ

δca
δ

δωa
− δΣ

δηa

δ

δba
− δΣ

δba
δ

δηa

+La δ

δλa
− ωa δ

δηa
− Ωaµ δ

δϑaµ

)
(8.18)

¿From the δ and δ Ward identities (8.12), (8.14) it follows that

a3 = a1 (8.19)
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so that the final expression for (8.16) becomes

Σc = −σ
4

∫
d4xF a

µνF
aµν + BB

∫
d4x

(
a1λ

aca + a2η
aλa + a1η

aca

+
a4

2
caca + a5ϑ

a
µA

aµ +
a6

2
AaµAa

µ +
a7

2
ϑa

µϑ
aµ
)

(8.20)

The coefficients σ, a1, a2, a4, a5, a6, a7 are easily seen to correspond to a multiplicative
renormalization of the coupling constant g, of the gauge and LCO parameters α, ζ, γ, of
the fields and external sources. In particular, the coefficients σ and a5 are related to the
renormalization of the gauge coupling constant g and of the gauge field Aa

µ, as it is apparent
from

BB
∫
d4xϑa

µA
aµ = −NAΣ (8.21)

where NA stands for the invariant counting operator

NA =

∫
d4x

(
Aa

µ

δ

δAa
µ

− Ωa
µ

δ

δΩa
µ

− Ω
a
µ

δ

δΩ
a
µ

− ϑa
µ

δ

δϑa
µ

)
+ γ

∂

∂γ
(8.22)

The coefficient a4 corresponds to the renormalization of the gauge parameter α, indeed

BB
∫
d4x

1

2
caca = −∂Σ

∂α
(8.23)

The coefficient a2 is associated to the renormalization of the LCO parameter ζ, which follows
from

BB
∫
d4xηaλa = −NζΣ (8.24)

with

Nζ = ζ
∂

∂ζ
+

∫
d4x

(
ωa δ

δba
− ηa δ

δca
+ λa δ

δca

)
(8.25)

The coefficient a1 is related to the anomalous dimensions of all ghost operators, namely

BB
∫
d4x (λaca + ηaca) = NLΣ (8.26)

where

NL =

∫
d4x

(
La δ

δLa
+ τa δ

δτa
+ λa δ

δλa
+ ωa δ

δωa
+ ηa δ

δηa

−ba δ

δba
− ca

δ

δca
− ca

δ

δca

)
− 2ζ

∂

∂ζ
(8.27)

The renormalization of the LCO parameter γ is given by the coefficient a7, as can be seen
from

BB
∫
d4x

(
1

2
ϑa

µϑ
aµ
)

=

(
∂

∂γ
−
∫
d4xϑa

µ

δ

δAa
µ

)
Σ (8.28)

Finally, the anomalous dimension of the ghost ca and the antighost ca are obtained from the
coefficient a6

BB
∫
d4x

(
1

2
AaµAa

µ

)
= NcΣ (8.29)
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with

Nc =

∫
d4x

(
1

2
ca

δ

δca
+

1

2
ca

δ

δca
+ ba

δ

δba
− La δ

δLa
− τa δ

δτa
− ωa δ

δωa

−3

2
λa δ

δλa
− 3

2
ηa δ

δηa

)
− 2α

∂

∂α
+ 2ζ

∂

∂ζ
(8.30)

¿From expressions (8.27) and (8.30) one sees that all sources La, τa, and ωa renormalize in
the same way, which means that all composite ghost polynomials fabccbcc, fabccbcc, fabccbcc

have indeed the same anomalous dimension. This result is a consequence of the relationship
(8.19) which, of course, stems from the existence of the NO algebra.

9 Appendix B

In order to construct the 1-loop effective potential, we need the values of ζ0, ρ0, ζ1 and ρ1.
These can be calculated as soon we know the divergences proportional to ω2 and Lτ when
the generating functional corresponding to the action (3.1) is calculated. In principle, it
is sufficient to calculate the divergences proportional to ω2 since the NO invariance leads to
ρ = 2ζ. Therefore, we can restrict ourselves to the diagrams with only the source ω connected.
Let us write

δρ = δρ0g
2 + δρ1g

4 + · · · (9.1)

For N = 2 and α = 0, the ghost propagator reads

〈
cacb

〉
p

= i
−p4δab + p2gǫabcωc − g2ωaωb

p2 (p4 + g2ω2)
(9.2)

while the gluon propagator is given by

〈
Aa

µA
b
ν

〉
p

=
−iδab

p2

(
gµν − pµpν

p2

)
(9.3)

The ghost-antighost-gluon vertex equals

gǫabcpµ (9.4)

The relevant vacuum bubbles14 are shown in Figure 2. At 1-loop, we find a contribution to
W(ω, τ, L), given by

− i

∫
ddp

(2π)d
ln
(
p4 + g2ω2

)
(9.5)

Performing a Wick rotation15 and employing the MS scheme, this leads to a divergence given
by

g2ω2 1

32π2

4

ε
(9.6)

14The diagrams containing a counterterm are not shown.
15If one would like to avoid a Wick rotation, one could have started immediately from the Euclidean Yang-

Mills action.
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Figure 2: Vacuum bubbles up to 2-loop order, giving divergences proportional to ω2.

Hence

δρ0 = − 1

4π2

1

ε
(9.7)

At 2-loops, the contribution to W(ω, τ, L) is obtained by computing the second diagram of
Figure 2, yielding

I =
1

2
ig2ǫabcǫa

′b′c′
∫

ddp

(2π)d
ddq

(2π)d

[
pµqν

−iδaa′

(p− q)2

(
gµν − (p− q)µ(p− q)ν

(p− q)2

)

×i−p
4δbc′ + gp2ǫbc

′eωe − g2ωbωc′

p2(p4 + g2ω2)
× i

−q4δb′c + gq2ǫb
′ceωe − g2ωb′ωc

q2(q4 + g2ω2)

]
(9.8)

Working out the color algebra, one finds

I = −g
2

2

∫
ddp

(2π)d
ddq

(2π)d

[
pµqν

(p− q)2

(
gµν − (p − q)µ(p − q)ν

(p− q)2

)

× −6p4q4 − 2g2ω2(p4 + q4 − p2q2)

p2q2(p4 + g2ω2)(q4 + g2ω2)

]
(9.9)

This integral I has been calculated in two steps: first all tensor integrals have been reduced
to a combination of scalar master integrals, applying simple algebraic rearrangements of
the scalar products which appear in the numerator of the integrand; all master integrals
are vacuum integrals, i.e. with vanishing external momentum; they have been replaced by
their explicit expression in terms of special functions [67] and expanded in powers of ε. The
calculation has been done with the Mathematica packages DiagExpand and ProcessDiagram.
We find

I =
g4ω2

(16π2)2

(
6

ε2
+

17

2ε
− 6

ε
ln
gω

µ2 + finite

)
(9.10)

We also have to take the counterterm information into account16. Since there is no coun-
terterm ∝ ωagfabccbcc in the Landau gauge, the only counterterm that will contribute at the
order we are working, is

δZcc
a∂µ∂

µδabcb (9.11)

where [47]

δZc =
3

2

g2N

16π2

1

ε
+ · · · ≡ z1

cg
2 + · · · (9.12)

16The corresponding diagram looks like the first one of Figure 2.
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This leads to a contribution

(
−2z1

c g
2
)(

−i
∫

ddp

(2π)d
ln
(
p4 + g2ω2

))
(9.13)

Or

[
−2z1

c g
2
] [

−g
2ω2

32π2

(
−4

ε
+ 2 ln

gω

µ2 − 3

)]
=

g4ω2

(16π2)2

(
−12

ε2
− 9

ε
+

6

ε
ln
gω

µ2 + finite

)
(9.14)

Hence, the complete 2-loop contribution to W(ω, τ, L) yields

(9.10) + (9.14) =
g4ω2

(16π2)2

(
− 6

ε2
− 1

2ε
+ finite

)
(9.15)

A good internal check of the calculations is that the terms proportional to 1
ε ln gω

µ2 are cancelled.

Finally, we find that

δρ1 =
1

(16π2)2

(
1

ε
+

12

ε2

)
(9.16)
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