350 research outputs found

    Requirements for a global data infrastructure in support of CMIP6

    Get PDF
    The World Climate Research Programme (WCRP)’s Working Group on Climate Modelling (WGCM) Infrastructure Panel (WIP) was formed in 2014 in response to the explosive growth in size and complexity of Coupled Model Intercomparison Projects (CMIPs) between CMIP3 (2005–2006) and CMIP5 (2011–2012). This article presents the WIP recommendations for the global data infrastruc- ture needed to support CMIP design, future growth, and evolution. Developed in close coordination with those who build and run the existing infrastructure (the Earth System Grid Federation; ESGF), the recommendations are based on several principles beginning with the need to separate requirements, implementation, and operations. Other im- portant principles include the consideration of the diversity of community needs around data – a data ecosystem – the importance of provenance, the need for automation, and the obligation to measure costs and benefits. This paper concentrates on requirements, recognizing the diversity of communities involved (modelers, analysts, soft- ware developers, and downstream users). Such requirements include the need for scientific reproducibility and account- ability alongside the need to record and track data usage. One key element is to generate a dataset-centric rather than system-centric focus, with an aim to making the infrastruc- ture less prone to systemic failure. With these overarching principles and requirements, the WIP has produced a set of position papers, which are summa- rized in the latter pages of this document. They provide spec- ifications for managing and delivering model output, includ- ing strategies for replication and versioning, licensing, data quality assurance, citation, long-term archiving, and dataset tracking. They also describe a new and more formal approach for specifying what data, and associated metadata, should be saved, which enables future data volumes to be estimated, particularly for well-defined projects such as CMIP6. The paper concludes with a future facing consideration of the global data infrastructure evolution that follows from the blurring of boundaries between climate and weather, and the changing nature of published scientific results in the digital age

    Current understanding of the human microbiome

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Medicine 24 (2018): 392–400, doi:10.1038/nm.4517.Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review, we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.Many of the studies described here in our laboratories were supported by the NIH, NSF, DOE, and the Alfred P. Sloan Foundation.2018-10-1

    Prevalence of intestinal parasitic infections among HIV patients in Benin City, Nigeria

    Get PDF
    This study was carried out to determine the presence of intestinal parasites and their correlation with CD4+ T-cell counts and demographics among human immunodeficiency virus (HIV)-positive patients in Benin City, Nigeria. Stool specimens from 2,000 HIV-positive patients and 500 controls (HIV-negative individuals) were examined for ova, cysts, or parasites, using standard procedures. In addition, patient's blood samples were analyzed for CD4 counts by flow cytometry. An overall prevalence rate of 15.3% was observed among HIV-positive patients while 6.2% was noted among non-HIV subjects. HIV status was a significant (P<0.0001) risk factor for acquiring intestinal parasitic infections. Male gender, CD4 count <200cell/µl, and diarrhea were significantly associated with an increased prevalence of intestinal parasitic infections among HIV-positive patients. The level of education, occupation, and source of water among HIV patients significantly (P<0.0001) affected the prevalence of intestinal parasitic infections. Ascaris lumbricoides was the most predominant parasite in both HIV-positive patients and controls. A CD4 count <200 cells/µl was significantly associated with only Isospora belli and Cryptosporidium infections. The presence of pathogenic intestinal parasites such as A. lumbricoides, hookworm, Giardia intestinalis, Entamoeba histolytica, Trichuris trichiura, and Taenia species among HIV-infected persons should not be neglected. Cryptosporidium species and I. belli were the opportunistic parasites observed in this study. Routine screening for intestinal parasites in HIV-positive patients is advocated

    Novel Anti-bacterial Activities of β-defensin 1 in Human Platelets: Suppression of Pathogen Growth and Signaling of Neutrophil Extracellular Trap Formation

    Get PDF
    Human β-defensins (hBD) are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus), forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of β-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET) formation by target polymorphonuclear leukocytes (PMNs), which is a novel antimicrobial function of β-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria
    corecore