155 research outputs found

    The role of extracellular vesicles in the removal of aggregated TDP43 responsible for ALS/FTD diseases

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two related neurodegenerative diseases. ALS is caused by the death of both upper and lower motoneurons, while FTD is characterized predominantly by circumscribed atrophy of the frontal and temporal lobes. ALS and FTD overlap each other. This is demonstrated by the presence of cognitive and behavioral dysfunction in up to 50% of ALS patients and by the presence of frontotemporal atrophy in patients with ALS. Moreover, these diseases are both characterize by the presence of TAR DNA binding protein 43 (TDP43) inclusions in affected cells. These inclusions, observed in 97% of patients with ALS and 50% of patients with FTD, are composed by TDP43 and its C-terminal fragments of 35 kDa (TDP35) and 25 kDa (TDP25). These fragments are highly aggregation-prone and probably neurotoxic. Thus, their removal is protective for cells. The mechanism responsible for the clearance of aggregates and misfolded proteins is the intracellular protein quality control (PQC) system. It consists of molecular chaperones/co- chaperones and the degradative pathways. PQC controls the folding status of proteins and prevents the aggregation of misfolded proteins by refolding them or degrading. Recent data demonstrated that also extracellular secretory pathway, represented especially by exosomes (EXOs) and microvesicles (MVs), might be involved in the removal of misfolded proteins from affected cells. Thus, we evaluated the role of EXOs and MVs in the secretion of TDP43 and its C-terminal fragments, using neuronal cell models. We used ultracentrifugation, that allowed us to separate MVs from EXOs on the basis of their dimension. Then we analyzed them through i) Nanoparticle Tracking Analysis (NanoSight) to establish their number and sizes, and ii) western blot analysis, to characterize their protein content. Our preliminary results show that TDP43, TDP35 and TDP25 are all secreted, mainly by MVs. In particular, we found that MVs are enriched of insoluble forms of TDPs and also of superoxide dismutase 1 (SOD1), another ALS-related protein. Finally, both in EXOs and in MVs, we observed the presence of some important PQC-components, suggesting an interplay between the two pathways. GRANTS: Fondazione Cariplo, Italy (n. 2017_0747); Universit\ue0 degli Studi di Milano e piano di sviluppo UNIMI - linea B

    Structural and biochemical impact of C8-aryl-guanine adducts within the NarI recognition DNA sequence: influence of aryl ring size on targeted and semi-targeted mutagenicity

    Get PDF
    Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G3-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8-aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo− (Kf−) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structure

    Extracellular Vesicles Derived From Plasma of Patients With Neurodegenerative Disease Have Common Transcriptomic Profiling

    Get PDF
    Objectives: There is a lack of effective biomarkers for neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia. Extracellular vesicle (EV) RNA cargo can have an interesting potential as a non-invasive biomarker for NDs. However, the knowledge about the abundance of EV-mRNAs and their contribution to neurodegeneration is not clear. Methods: Large and small EVs (LEVs and SEVs) were isolated from plasma of patients and healthy volunteers (control, CTR) by differential centrifugation and filtration, and RNA was extracted. Whole transcriptome was carried out using next generation sequencing (NGS). Results: Coding RNA (i.e., mRNA) but not long non-coding RNAs (lncRNAs) in SEVs and LEVs of patients with ALS could be distinguished from healthy CTRs and from other NDs using the principal component analysis (PCA). Some mRNAs were found in commonly deregulated between SEVs of patients with ALS and frontotemporal dementia (FTD), and they were classified in mRNA processing and splicing pathways. In LEVs, instead, one mRNA and one antisense RNA (i.e., MAP3K7CL and AP003068.3) were found to be in common among ALS, FTD, and PD. No deregulated mRNAs were found in EVs of patients with AD. Conclusion: Different RNA regulation occurs in LEVs and SEVs of NDs. mRNAs and lncRNAs are present in plasma-derived EVs of NDs, and there are common and specific transcripts that characterize LEVs and SEVs from the NDs considered in this study

    Structural and biochemical impact of C8-aryl-guanine adducts within the Narl recognition DNA sequence: influence of aryl ring size on targeted and semi-targeted mutagenicity

    Get PDF
    Sherpa Romeo green journal, open accessChemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2 -deoxyguanosine (dG). The resulting carbonlinked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G3-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8- aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo− (Kf−) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structures.Ye

    Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics

    Get PDF
    We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10−9), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients’ fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: −2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: −1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients

    Density functional theory

    Get PDF
    Density functional theory (DFT) finds increasing use in applications related to biological systems. Advancements in methodology and implementations have reached a point where predicted properties of reasonable to high quality can be obtained. Thus, DFT studies can complement experimental investigations, or even venture with some confidence into experimentally unexplored territory. In the present contribution, we provide an overview of the properties that can be calculated with DFT, such as geometries, energies, reaction mechanisms, and spectroscopic properties. A wide range of spectroscopic parameters is nowadays accessible with DFT, including quantities related to infrared and optical spectra, X-ray absorption and Mössbauer, as well as all of the magnetic properties connected with electron paramagnetic resonance spectroscopy except relaxation times. We highlight each of these fields of application with selected examples from the recent literature and comment on the capabilities and limitations of current methods

    Opioid use, post-operative complications, and implant survival after unicompartmental versus total knee replacement: a population-based network study

    Get PDF
    Background There is uncertainty around whether to use unicompartmental knee replacement (UKR) or total knee replacement (TKR) for individuals with osteoarthritis confined to a single compartment of the knee. We aimed to emulate the design of the Total or Partial Knee Arthroplasty Trial (TOPKAT) using routinely collected data to assess whether the efficacy results reported in the trial translate into effectiveness in routine practice, and to assess comparative safety. Methods We did a population-based network study using data from four US and one UK health-care database, part of the Observational Health Data Sciences and Informatics network. The inclusion criteria were the same as those for TOPKAT; briefly, we identified patients aged at least 40 years with osteoarthritis who had undergone UKR or TKR and who had available data for at least one year prior to surgery. Patients were excluded if they had evidence of previous knee arthroplasty, knee fracture, knee surgery (except diagnostic), rheumatoid arthritis, infammatory arthropathies, or septic arthritis. Opioid use from 91–365 days after surgery, as a proxy for persistent pain, was assessed for all participants in all databases. Postoperative complications (ie, venous thromboembolism, infection, readmission, and mortality) were assessed over the 60 days after surgery and implant survival (as measured by revision procedures) was assessed over the 5 years after surgery. Outcomes were assessed in all databases, except for readmission, which was assessed in three of the databases, and mortality, which was assessed in two of the databases. Propensity score matched Cox proportional hazards models were fitted for each outcome. Calibrated hazard ratios (cHRs) were generated for each database to account for observed differences in control outcomes, and cHRs were then combined using meta-analysis. Findings 33 867 individuals who received UKR and 557 831 individuals who received TKR between Jan 1, 2005, and April 30, 2018, were eligible for matching. 32 379 with UKR and 250 377 with TKR were propensity score matched and informed the analyses. UKR was associated with a reduced risk of postoperative opioid use (cHR from meta-analysis 0·81, 95% CI 0·73–0·90) and a reduced risk of venous thromboembolism (0·62, 0·36–0·95), whereas no difference was seen for infection (0·85, 0·51–1·37) and readmission (0·79, 0·47–1·25). Evidence was insufficient to conclude whether there was a reduction in risk of mortality. UKR was also associated with an increased risk of revision (1·64, 1·40–1·94). Interpretation UKR was associated with a reduced risk of postoperative opioid use compared with TKR, which might indicate a reduced risk of persistent pain after surgery. UKR was associated with a lower risk of venous thromboembolism but an increased risk of revision compared with TKR. These findings can help to inform shared decision making for individuals eligible for knee replacement surgery. Funding EU/European Federation of Pharmaceutical Industries and Associations Innovative Medicines Initiative (2) Joint Undertaking (EHDEN)

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P=1 × 10-4) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10-7). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies

    Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials

    Get PDF
    OBJECTIVE: To assess whether genetic subgroups in recent amyotrophic lateral sclerosis (ALS) trials responded to treatment with lithium carbonate, but that the treatment effect was lost in a large cohort of nonresponders. METHODS: Individual participant data were obtained from 3 randomized trials investigating the efficacy of lithium carbonate. We matched clinical data with data regarding the UNC13A and C9orf72 genotype. Our primary outcome was survival at 12 months. On an exploratory basis, we assessed whether the effect of lithium depended on the genotype. RESULTS: Clinical data were available for 518 of the 606 participants. Overall, treatment with lithium carbonate did not improve 12-month survival (hazard ratio [HR] 1.0, 95% confidence interval [CI] 0.7-1.4; p = 0.96). Both the UNC13A and C9orf72 genotype were independent predictors of survival (HR 2.4, 95% CI 1.3-4.3; p = 0.006 and HR 2.5, 95% CI 1.1-5.2; p = 0.032, respectively). The effect of lithium was different for UNC13A carriers (p = 0.027), but not for C9orf72 carriers (p = 0.22). The 12-month survival probability for UNC13A carriers treated with lithium carbonate improved from 40.1% (95% CI 23.2-69.1) to 69.7% (95% CI 50.4-96.3). CONCLUSIONS: This study incorporated genetic data into past ALS trials to determine treatment effects in a genetic post hoc analysis. Our results suggest that we should reorient our strategies toward finding treatments for ALS, start focusing on genotype-targeted treatments, and standardize genotyping in order to optimize randomization and analysis for future clinical trials

    NEK1 variants confer susceptibility to amyotrophic lateral sclerosis

    Get PDF
    To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology
    corecore