348 research outputs found
Application of large area SiPMs for the readout of a plastic scintillator based timing detector
In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end
of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon
beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6
cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM
anode readout ASIC (MUSIC R1) based on a novel low input impedance current
conveyor has been used to read out and amplify SiPMs independently and sum the
signals at the end. Prospects for applications in large-scale particle physics
detectors with timing resolution below 100 ps are provided in light of the
results
Application of large area SiPMs for the readout of a plastic scintillator based timing detector
In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end
of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon
beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6
cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM
anode readout ASIC (MUSIC R1) based on a novel low input impedance current
conveyor has been used to read out and amplify SiPMs independently and sum the
signals at the end. Prospects for applications in large-scale particle physics
detectors with timing resolution below 100 ps are provided in light of the
results
Beam test results of 3D fine-grained scintillator detector prototype for a T2K ND280 neutrino active target
An upgrade of the long baseline neutrino experiment T2K near detector ND280
is currently being developed with the goal to reduce systematic uncertainties
in the prediction of number of events at the far detector Super-Kamiokande. The
upgrade program includes the design and construction of a new highly granular
fully active scintillator detector with 3D WLS fiber readout as a neutrino
target. The detector of about in size and a mass
of 2.2~tons will be assembled from about plastic
scintillator cubes of . Each cube is read out by three
orthogonal Kuraray Y11 Wave Length Shifting (WLS) fibers threaded through the
detector. A detector prototype made of 125 cubes was assembled and tested in a
charged particle test beam at CERN in the fall of 2017. This paper presents the
results obtained on the light yield and timing as well as on the optical
cross-talk between the cubes.Comment: 5 pages, 8 figure
Uncertainties on the /, / and / cross-section ratio from the modelling of nuclear effects and their impact on neutrino oscillation experiments
Recent studies have demonstrated non-trivial behaviours in the cross-section
extrapolation from () to
() interactions on nuclear targets in the charged-current
quasi-elastic (CCQE) regime. In this article, the potential for mis-modeling of
/, / and
/ cross-section ratios due to nuclear effects is
quantified by considering the model spread within the full kinematic phase
space for CCQE interactions. Its impact is then propagated to a simulated
experimental configuration based on the Hyper-K experiment, which is dominated
by CCQE interactions. Although a relatively large discrepancy between
theoretical models is confirmed for forward lepton angles at neutrino energies
below 300 MeV and for a new region of phase space at lepton angles above
, both regions are demonstrated to contribute a very small portion
of the Hyper-K (or T2K) flux integrated cross section. Overall, a systematic
uncertainty on the oscillated flux-averaged /
cross-section ratio is estimated to be 2%. A similar study was also
conducted for the proposed lower-energy ESSSB experiment configuration,
where the resulting uncertainty was found to be larger.Comment: 14 pages, 10 figures. Fixed abstract misformating on arxiv pag
Status of the ArDM Experiment: First results from gaseous argon operation in deep underground environment
The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr)
double-phase time projection chamber designed for direct Dark Matter searches.
Such a device allows to explore the low energy frontier in LAr. After
successful operation on surface at CERN, the detector has been deployed
underground and is presently commissioned at the Canfranc Underground
Laboratory (LSC). In this paper, we describe the status of the installation and
present first results on data collected in gas phase.Comment: 21 pages, 20 figure
ArDM: first results from underground commissioning
The Argon Dark Matter experiment is a ton-scale double phase argon Time
Projection Chamber designed for direct Dark Matter searches. It combines the
detection of scintillation light together with the ionisation charge in order
to discriminate the background (electron recoils) from the WIMP signals
(nuclear recoils). After a successful operation on surface at CERN, the
detector was recently installed in the underground Laboratorio Subterr\'aneo de
Canfranc, and the commissioning phase is ongoing. We describe the status of the
installation and present first results from data collected underground with the
detector filled with gas argon at room temperature.Comment: 6 pages, 3 figures, Light Detection In Noble Elements (LIDINE 2013
Measurements of , , , and proton production in proton-carbon interactions at 31 GeV/ with the NA61/SHINE spectrometer at the CERN SPS
Measurements of hadron production in p+C interactions at 31 GeV/c are
performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2009 using a graphite target with a
thickness of 4% of a nuclear interaction length. Inelastic and production cross
sections as well as spectra of , , p, and are
measured with high precision. These measurements are essential for improved
calculations of the initial neutrino fluxes in the T2K long-baseline neutrino
oscillation experiment in Japan. A comparison of the NA61/SHINE measurements
with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the
final published versio
The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of
kton liquid double phase TPC complemented by a magnetised iron
calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km
from CERN. The conventional neutrino beam is produced by 400 GeV protons
accelerated at the SPS accelerator delivering 700 kW of power. The long
baseline provides a unique opportunity to study neutrino flavour oscillations
over their 1st and 2nd oscillation maxima exploring the behaviour, and
distinguishing effects arising from and matter. In this paper we
show how this comprehensive physics case can be further enhanced and
complemented if a neutrino beam produced at the Protvino IHEP accelerator
complex, at a distance of 1160 km, and with modest power of 450 kW is aimed
towards the same far detectors. We show that the coupling of two independent
sub-MW conventional neutrino and antineutrino beams at different baselines from
CERN and Protvino will allow to measure CP violation in the leptonic sector at
a confidence level of at least for 50\% of the true values of
with a 20 kton detector. With a far detector of 70 kton, the
combination allows a sensitivity for 75\% of the true values of
after 10 years of running. Running two independent neutrino
beams, each at a power below 1 MW, is more within today's state of the art than
the long-term operation of a new single high-energy multi-MW facility, which
has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure
- …