236 research outputs found

    A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor

    Get PDF
    BACKGROUND: Bone morphogenetic proteins (BMPs) are key regulators in the embryonic development and postnatal tissue homeostasis in all animals. Loss of function or dysregulation of BMPs results in severe diseases or even lethality. Like transforming growth factors β (TGF-βs), activins, growth and differentiation factors (GDFs) and other members of the TGF-β superfamily, BMPs signal by assembling two types of serine/threonine-kinase receptor chains to form a hetero-oligomeric ligand-receptor complex. BMP ligand receptor interaction is highly promiscuous, i.e. BMPs bind more than one receptor of each subtype, and a receptor bind various ligands. The activin type II receptors are of particular interest, since they bind a large number of diverse ligands. In addition they act as high-affinity receptors for activins but are also low-affinity receptors for BMPs. ActR-II and ActR-IIB therefore represent an interesting example how affinity and specificity might be generated in a promiscuous background. RESULTS: Here we present the high-resolution structures of the ternary complexes of wildtype and a variant BMP-2 bound to its high-affinity type I receptor BMPR-IA and its low-affinity type II receptor ActR-IIB and compare them with the known structures of binary and ternary ligand-receptor complexes of BMP-2. In contrast to activin or TGF-β3 no changes in the dimer architecture of the BMP-2 ligand occur upon complex formation. Functional analysis of the ActR-IIB binding epitope shows that hydrophobic interactions dominate in low-affinity binding of BMPs; polar interactions contribute only little to binding affinity. However, a conserved H-bond in the center of the type II ligand-receptor interface, which does not contribute to binding in the BMP-2 – ActR-IIB interaction can be mutationally activated resulting in a BMP-2 variant with high-affinity for ActR-IIB. Further mutagenesis studies were performed to elucidate the binding mechanism allowing us to construct BMP-2 variants with defined type II receptor binding properties. CONCLUSION: Binding specificity of BMP-2 for its three type II receptors BMPR-II, Act-RII and ActR-IIB is encoded on single amino acid level. Exchange of only one or two residues results in BMP-2 variants with a dramatically altered type II receptor specificity profile, possibly allowing construction of BMP-2 variants that address a single type II receptor. The structure-/function studies presented here revealed a new mechanism, in which the energy contribution of a conserved H-bond is modulated by surrounding intramolecular interactions to achieve a switch between low- and high-affinity binding

    Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro

    Get PDF
    Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye

    Receptor oligomerization and beyond: a case study in bone morphogenetic proteins

    Get PDF
    BACKGROUND: Transforming growth factor (TGF)β superfamily members transduce signals by oligomerizing two classes of serine/threonine kinase receptors, termed type I and type II. In contrast to the large number of ligands only seven type I and five type II receptors have been identified in mammals, implicating a prominent promiscuity in ligand-receptor interaction. Since a given ligand can usually interact with more than one receptor of either subtype, differences in binding affinities and specificities are likely important for the generation of distinct ligand-receptor complexes with different signaling properties. RESULTS: In vitro interaction analyses showed two different prototypes of binding kinetics, 'slow on/slow off' and 'fast on/fast off'. Surprisingly, the binding specificity of ligands to the receptors of one subtype is only moderate. As suggested from the dimeric nature of the ligands, binding to immobilized receptors shows avidity due to cooperative binding caused by bivalent ligand-receptor interactions. To compare these in vitro observations to the situation in vivo, binding studies on whole cells employing homodimeric as well as heterodimeric bone morphogenetic protein 2 (BMP2) mutants were performed. Interestingly, low and high affinity binding sites were identified, as defined by the presence of either one or two BMP receptor (BMPR)-IA receptor chains, respectively. Both sites contribute to different cellular responses in that the high affinity sites allow a rapid transient response at low ligand concentrations whereas the low affinity sites facilitate sustained signaling but higher ligand concentrations are required. CONCLUSION: Binding of a ligand to a single high affinity receptor chain functioning as anchoring molecule and providing sufficient complex stability allows the subsequent formation of signaling competent complexes. Another receptor of the same subtype, and up to two receptors of the other subtype, can then be recruited. Thus, the resulting receptor arrangement can principally consist of four different receptors, which is consistent with our interaction analysis showing low ligand-receptor specificity within one subtype class. For BMP2, further complexity is added by the fact that heterooligomeric signaling complexes containing only one type I receptor chain can also be found. This indicates that despite prominent ligand receptor promiscuity a manifold of diverse signals might be generated in this receptor limited system

    MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression

    Get PDF
    Recombinant adeno-associated viruses (rAAVs) that can cross the blood-brain-barrier and achieve efficient and stable transvascular gene transfer to the central nervous system (CNS) hold significant promise for treating CNS disorders. However, following intravascular delivery, these vectors also target liver, heart, skeletal muscle, and other tissues, which may cause untoward effects. To circumvent this, we used tissue-specific, endogenous microRNAs (miRNAs) to repress rAAV expression outside the CNS, by engineering perfectly complementary miRNA-binding sites into the rAAV9 genome. This approach allowed simultaneous multi-tissue regulation and CNS-directed stable transgene expression without detectably perturbing the endogenous miRNA pathway. Regulation of rAAV expression by miRNA was primarily via site-specific cleavage of the transgene mRNA, generating specific 5\u27 and 3\u27 mRNA fragments. Our findings promise to facilitate the development of miRNA-regulated rAAV for CNS-targeted gene delivery and other applications

    Mitochondrial mutations and metabolic adaptation in pancreatic cancer.

    Get PDF
    BACKGROUND: Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. METHODS: We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing. RESULTS: We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours. CONCLUSIONS: The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy

    Magmatic plumbing at Lucky Strike volcano based on olivine-hosted melt inclusion compositions

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 126–147, doi:10.1002/2014GC005517.Here we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens has been seismically imaged on a slow-spreading ridge. Vapor-saturation pressures, calculated from CO2 and H2O contents of Lucky Strike melt inclusions, range from approximately 300–3000 bars, corresponding to depths of 0.5–9.9 km below the seafloor. Approximately 50% of the melt inclusions record crystallization depths of 3–4 km, corresponding to the seismically imaged melt lens depth, while an additional ∼35% crystallize at depths > 4 km. This indicates that while crystallization is focused within the melt lens, significant crystallization also occurs in the lower crust and/or upper mantle. The melt inclusions span a range of major and trace element concentrations from normal to enriched basalts. Trace element ratios at all depths are heterogeneous, suggesting that melts are not efficiently homogenized in the mantle or crust, despite the presence of a melt lens. This is consistent with the transient nature of magma chambers proposed for slower-spreading ridges. To investigate the petrogenesis of the melt inclusion compositions, we compare the measured trace element compositions to theoretical melting calculations that consider variations in the melting geometry and heterogeneities in the mantle source. The full range of compositions can be produced by slight variations in the proportion of an Azores plume and depleted upper mantle components and changes in the total extent of melting.thanked for his help with sample preparation. The GRAVILUCK'06 and Bathyluck'08 cruises where financed by the French Ministry of Research. This work was supported by NSF grant OCE-0926422 to A.M.S., OCE-PRF-1226130 to V.D.W., OCE-1333492 to S.A.S., and EAR-09-48666 to M.D.B., and by ANR (France) Mothseim Project NT05-342213 to J.E.2015-07-2

    Tribbles homolog 3 denotes a poor prognosis in breast cancer and is involved in hypoxia response

    Get PDF
    Hypoxia in solid tumors is associated with treatment resistance, resulting in poor prognosis. Tribbles homolog 3 (TRIB3) is induced during hypoxia and is involved in multiple cellular pathways involved in cell survival. Here, we investigated the role of TRIB3 in breast cancer. TRIB3 mRNA expression was measured in breast tumor tissue from 247 patients and correlated with clinicopathological parameters and clinical outcome. Furthermore, we studied TRIB3 expression regulation in cell lines, xenografts tissues and human breast cancer material using Reverse transcriptase, quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining. Finally, the effect of small interfering RNA (siRNA) mediated TRIB3 knockdown on hypoxia tolerance was assessed. Breast cancer patients with low, intermediate or high TRIB3 expression exhibited a mean disease free survival (DFS) of 80 (95% confidence interval [CI] = 74 to 86), 74 (CI = 67 to 81), and 63 (CI = 55 to 71) months respectively (P = .002, Mantel-Cox log-rank). The prognostic value of TRIB3 was limited to those patients that had received radiotherapy as part of their primary treatment (n = 179, P = .005) and remained statistically significant after correction for other clinicopathological parameters (DFS, Hazard Ratio = 1.90, CI = 1.17 to 3.08, P = .009). In breast cell lines TRIB3 expression was induced by hypoxia, nutrient starvation, and endoplasmic reticulum stress in an hypoxia inducible factor 1 (HIF-1) independent manner. TRIB3 induction after hypoxia did not increase with decreasing oxygen levels. In breast tumor xenografts and human breast cancer tissues TRIB3 co-localized with the hypoxic cell marker pimonidazole. The induction of TRIB3 by hypoxia was shown to be regulated via the PERK/ATF4/CHOP pathway of the unfolded protein response and knockdown of TRIB3 resulted in a dose-dependent increase in hypoxia sensitivity. TRIB3 is independently associated with poor prognosis of breast cancer patients, possibly through its association with tumor cell hypoxi

    Novel features of ARS selection in budding yeast Lachancea kluyveri

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined.</p> <p>Results</p> <p>In this study we have isolated and characterized autonomously replicating sequences (ARSs) in <it>Lachancea kluyveri </it>- a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that <it>L. kluyveri </it>ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in <it>Saccharomyces cerevisiae</it>. Moreover, compared with <it>S. cerevisiae </it>and <it>K. lactis</it>, the replication licensing machinery in <it>L. kluyveri </it>seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all <it>S. cerevisiae </it>ARSs tested and most <it>Kluyveromyces lactis </it>ARSs. In contrast, only about half of the <it>L. kluyveri </it>ARSs function in <it>S. cerevisiae </it>and less than 10% function in <it>K. lactis</it>.</p> <p>Conclusions</p> <p>Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs.</p
    corecore