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Recombinant adeno-associated viruses (rAAVs) that can 
cross the blood–brain-barrier and achieve efficient and 
stable transvascular gene transfer to the central nervous 
system (CNS) hold significant promise for treating CNS 
disorders. However, following intravascular delivery, 
these vectors also target liver, heart, skeletal muscle, 
and other tissues, which may cause untoward effects. 
To circumvent this, we used tissue-specific, endogenous 
microRNAs (miRNAs) to repress rAAV expression out-
side the CNS, by engineering perfectly complemen-
tary miRNA-binding sites into the rAAV9 genome. This 
approach allowed simultaneous multi-tissue regulation 
and CNS-directed stable transgene expression without 
detectably perturbing the endogenous miRNA pathway. 
Regulation of rAAV expression by miRNA was primarily via 
site- specific cleavage of the transgene mRNA, generating 
specific 5′ and 3′ mRNA fragments. Our findings promise 
to facilitate the development of miRNA- regulated rAAV 
for CNS-targeted gene delivery and other applications.

Received 4 September 2010; accepted 19 November 2010;  
published online 21 December 2010. doi:10.1038/mt.2010.279

IntroductIon
Gene transfer mediated by recombinant adeno-associated virus 
(rAAV) holds promise for treatment of a large number of neuro-
logical disorders, but the blood–brain barrier blocks systemic vector 
delivery to the central nervous system (CNS). Nonetheless, previ-
ous proof-of-concept clinical studies using intracranial injection 
of AAV serotype 2-based vectors to the brain provided sustained 
gene expression and therapeutic effects.1–4 Although localized vector 
delivery may be effective in treating CNS disorders that map to well 

defined anatomic and functional regions of the brain, the process 
requires invasive neurosurgical procedures and, therefore, is costly 
and potentially risky. If AAV vectors could cross the blood–brain 
barrier and be specifically expressed in the CNS, intravascular deliv-
ery of rAAV would provide a more effective method for gene therapy 
of CNS diseases that affect large areas of the brain and spinal cord.

Recent advancements in the discovery, rational design, and 
directed evolution of AAV have created a collection of distinct 
recombinant AAVs (rAAVs) appropriate for different gene transfer 
applications.5 Among these vectors, rAAV6, rAAV8, and rAAV9 
stand out for their ability to deliver genes transvascularly to tar-
get tissues.6–9 Intravascularly administered rAAV9 and some other 
rAAVs with capsid modifications can cross the blood–brain barrier, 
efficiently transferring genes to the CNS in mice, cats, and nonhu-
man primates.10–14 Nonetheless, several potential challenges remain 
to using rAAV9 to treat CNS disorders. The first challenge is to 
deliver rAAV specifically to the CNS. The viral capsid is the princi-
pal determinant for AAV tissue tropism,5 and the liver is the major 
target for AAV vectors. Systemic administration of some rAAV 
serotypes transduces the liver and other tissues, including the CNS, 
skeletal muscle, heart, pancreas, and antigen-presenting cells.6,7 
Such off-target transduction raises the specter of overexpression of 
transgenes outside the CNS, potentially eliciting toxic responses. 
Thus, the second challenge is to confine transgene expression to 
the CNS when rAAV9 is delivered systemically. Historically, CNS-
specific promoters have been used to limit transgene expression to 
the CNS. However, tissue-specific, strong CNS promoters are often 
too large to be packaged into the rAAV genome.

As an alternative, we used endogenous microRNAs 
 (miRNAs) to suppress transgene expression outside the CNS. 
miRNAs are small, noncoding RNAs that regulate gene expres-
sion by post- transcriptional silencing. miRNAs silence genes 
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by two mechanisms. When partially complementary to mRNA 
sequences, they typically reduce target mRNA stability and pro-
tein expression by two- to fourfold or less, a mode of regula-
tion thought to tune mRNA expression.15 In contrast, when 
miRNAs are nearly perfectly complementary to their mRNA 
targets, they cleave the mRNA, triggering its wholesale destruc-
tion. miRNA-binding sites were first used in lentiviral vectors 
to suppress transgene expression in hematopoietic cells, thereby 
attenuating transgene immunogenicity.16 The strategy was sub-
sequently used to regulate naked DNA-mediated gene transfer, 
detarget oncolytic viral therapeutics from noncancer tissues to 
reduce host toxicity, and, in another application, attenuate live, 
attenuated virus-based viral vaccines to reduce toxicity in vac-
cine recipients.16–21 The use of miRNA detargeting poses special 
challenges for systemic delivery of rAAV to transduce the CNS. 
Intravascularly delivered rAAV for CNS-targeted transduction 
requires suppressing high levels of rAAV expression in multiple 
peripheral tissues even when transgene transcripts are success-
fully expressed in the brain.

Here, we report the use of miRNAs to detarget rAAV9 expres-
sion both separately and concurrently in the liver, heart, and skel-
etal muscle, the three tissues that are most efficiently targeted by 
intravenously delivered rAAV9.7,8 Silencing of transgene expres-
sion in liver, heart, and muscle exploited the natural expression 
of the abundant (≥60,000 copies/cell) miRNAs, miR-122, which is 
expressed in hepatocytes, and miR-1, a miRNA found in the heart 
and skeletal muscle of virtually all animals.22,23 miR-122-binding 
sites have been successfully used to prevent hepatotoxicity of a 
transgene from an adenovirus vector.18 Perfectly complementary 
sites for miR-1, miR-122, or both were engineered into the 3′ 
untranslated region (UTR) of a nuclear-targeted, β-galactosidase 
(nLacZ) reporter transgene whose expression was driven by a 
cytomegalovirus-enhancer, chicken β-actin (CB) promoter. We 
present multiple independent lines of evidence to show that the 
miRNAs repress nLacZ expression by cleaving the transgene 
mRNA at exactly the same site as by all Argonaute-bound small 
RNAs in eukaryotic cells.24 When delivered systemically in vivo, 
the miRNA-detargeted rAAV9 vector successfully expressed the 
reporter transgene in the CNS, but not the liver or heart or skeletal 
muscle.

results
mirnAs efficiently repress reporter  
gene expression in cultured cells
Endogenous miRNA-mediated post-transcriptional gene silenc-
ing has proven to be an effective and tissue-specific approach to 
regulate transgene or viral gene expression in vivo for plasmids, 
viral vectors, or live, attenuated viral vaccines.16–21 To evaluate this 
strategy for rAAV-mediated transduction, we introduced one or 
three tandem copies of a perfectly complementary binding site for 
miR-1 or miR-122 into the 3′ UTR of nLacZ in a rAAV plasmid 
vector. We transfected the constructs into HuH7 cells, a human 
hepatoma cell line expressing ~16,000 copies of miR-122 per cell,23 
and measured the number of nLacZ-positive cells. The number of 
nLacZ-expressing HuH7 cells for the one-site plasmid was about 
half that of the no site control; three sites reduced the number of 
nLacZ-expressing cells more than sevenfold (Figure 1a).

Next, we analyzed expression of the nLacZ constructs in 
human embryonic kidney 293 cells, which naturally express 
low levels of both miR-122 and miR-1, when miR-1 or miR-
122 was introduced as a pri-miRNA from a second plasmid. 
We transfected 293 cells with the nLacZ reporter plasmids car-
rying 0, 1, or 3 miR-122 or miR-1-binding sites, together with 
a plasmid expressing either pri-miR-122 (Figure 1b) or pri-
miR-1 (Figure 1c). To vary the concentration of the miRNA, 
we used either a low (1:3) or a high (1:10) molar ratio of the 
nLacZ-binding site plasmid to the miRNA expression plasmid. 
When miR-122 or miR-1 was introduced into the cells, nLacZ 
expression was repressed only when the nLacZ reporter mRNA 
contained the corresponding miRNA-binding sites; there was no 
reduction of nLacZ-positive cells when miR-1 was coexpressed 
with nLacZ containing miR-122-binding sites or when miR-122 
was coexpressed with nLacZ containing miR-1-binding sites 
(Figure 1b,c).
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Figure 1 In vitro validation of artificial mirnA-binding sites for reporter 
silencing. Plasmids harboring the rAAVCBnLacZ genome with or without 
miR-1 or miR-122-binding sites were transfected into human hepatoma 
(HuH7) cells (a) which express miR-122 or cotransfected into 293 cells, 
together with a plasmid expressing either pri-miR-122 (b) or pri-miR-1 
(c) at molar ratios of 1:3 (low) or 1:10 (high). 0X: no miRNA-binding site; 
1X: one miRNA-binding site; 3X: three miRNA-binding sites. The cells were 
fixed and stained histochemically with X-gal 48 hours after transfection and 
blue cells counted. The percentage of nLacZ-positive cells in each transfec-
tion were compared to transfection of the control plasmid (prAAVCBnLacZ). 
CB, chicken β-actin; miR, microRNA; nLacZ, β-galactosidase reporter trans-
gene; rAAV, recombinant adeno-associated viruses.
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tissue-specific endogenous mirnAs can  
regulate expression of rAAV9 delivered  
systemically in adult mice
To evaluate miRNA regulation of systemically delivered 
AAV9CBnLacZ vectors in vivo, we produced AAV9CBnLacZ vec-
tors carrying 0, 1, or 3 miRNA-binding sites perfectly complemen-
tary to either miR-122 or miR-1. The vectors were administered 
by tail vein injection to adult male C56BL/6 mice at a dose of 
5 × 1013 genome copies per kg (GC/kg) body weight. Four weeks 
later, we examined the liver and heart of the transduced animals. 
LacZ staining revealed that the nLacZ transgene was silenced by the 
endogenous miRNAs in the cell type and organ in which they are 
predominantly expressed: the transgene was specifically silenced by 
miR-122 in the liver and by miR-1 in the heart (Figure 2a,b). While 

nLacZ positive cells were reduced in the livers of the animals treated 
with rAAV9CBnLacZ bearing one or three miR-122-binding sites, 
nLacZ expression levels in the hearts of the same animals were simi-
lar to those in the animals treated with AAV9CBnLacZ bearing no 
sites (Figure 2a). Similarly, nLacZ expression was not detected in the 
hearts of the animals that received AAV9CBnLacZ containing one 
or three miR-1-binding sites, but nLacZ expression in the livers of 
the same animals was not affected as compared to that in the control 
animal (Figure 2b). Our data suggest that the greater the number of 
sites for a miRNA in rAAV, the lower the nLacZ expression in the 
tissue where the corresponding miRNA is expressed (Figure 2a,b).

Next, we tested whether transgene silencing could be achieved 
simultaneously in multiple tissues. We inserted different num-
bers of both miR-122- and miR-1-binding sites in the 3′ UTR 
of the rAAV9CBnLacZ genome and examined their expression 
in rAAV9 transduced mice. Histochemical staining of tissue sec-
tions showed that nLacZ expression was suppressed in both heart 
and liver for rAAV9CBnLac containing one or three copies each 
of the miR-1- and miR-122-binding sites, but nLacZ was readily 
detectable in pancreas, where expression of both miR-122 and 
miR-1 is low25 (Figure 2c). Quantitative, β-galactosidase assays 
of homogenized liver tissue similarly showed that nLacZ expres-
sion was significantly lower when the transgene contained the 
miRNA-binding sites (one miR-122-binding site: 7.8 ± 7.4%, 
P value = 0.005; three miR-122-binding sites: 1.6 ± 1.0%, 
P value = 0.005; one miR-1- plus one miR-122-binding site: 
8.6 ± 5.7%, P value = 0.005; three miR-1- plus three miR-122-
binding sites: 3.1 ± 1.2%, P value = 0.005; three miR-1-binding 
sites: 105.7 ± 11.6%) (Supplementary Figure S1).

mirnA repression of rAAV expression does not 
perturb endogenous mirnA pathways
Highly expressed transgenes bearing miRNA-complementary 
sites have been reported to promote degradation of the corre-
sponding miRNA.26 We examined the levels of miR-122, miR-22, 
miR-26a, and let-7 in rAAV transduced liver. We detected no dif-
ference in abundance of the four miRNAs among the three study 
groups (Figure 3a). Moreover, our preliminary data from high 
throughput sequencing analyses of small RNA from the livers of 
one animal each from the three study groups show no change in 
miRNA levels (data not shown).

Introducing miRNA-complementary sites into a highly 
expressed transgene might also divert the corresponding miRNA 
to the transgene mRNA from its natural targets, derepressing 
them. We tested whether the miRNA-binding sites in the trans-
gene transcripts would deregulate the expression of the known 
endogenous target mRNAs of miR-122 or miR-1. We analyzed the 
expression of cyclin G1, a miR-122 target in liver (Figure 3b,c) 
and calmodulin, a miR-1 target in heart (Figure 3d). We detected 
no significant alteration in cyclin G1 or calmodulin expression. 
miR-122 regulates cholesterol biosynthesis in the liver, and agents 
that block miR-122 function produce readily detectable changes in 
serum cholesterol levels.27 We could detect no change in total cho-
lesterol, high-density lipoprotein, or low-density lipoprotein lev-
els in mice 4 weeks after transduction with either control rAAV9 
or rAAV9 expressing a transgene bearing miR-122-binding sites 
(Figure 3e). We conclude that miRNA-mediated detargeting of 
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Figure 2 In vivo evaluation of endogenous mirnA-mediated trans-
gene silencing in rAAV9 transduction. (a–c) Adult male C58BL/6 
mice were injected intravenously with 5 × 1013 genome copies per kg 
(GC/kg) each of rAAV9CBnLacZ (no binding site), (a) rAAVCB9nLacZ-
miR-122BS (one miR-122-binding site) and rAAV9CBnLacZ-(miR-122BS)3 
(three miR-122-binding sites), (b) rAAV9CBnLacZ-miR-1BS (one miR-1 
binding site) and rAAV9CBnLacZ-(miR-1BS)3 (three miR-1-binding sites, 
and (c) rAAV9CBnLacZ-miR-1BS-miR-122BS (1X each binding site) and 
rAAV9CBnLacZ-(miR-1BS)3–(miR-122BS)3 (three miR-1 and three miR-
122-binding sites). The animals were necropsied 4 weeks after vector 
administration, and appropriate tissues were harvested for cryosectioning 
and X-gal histochemical staining. miR, microRNA; nLacZ, β-galactosidase 
reporter transgene; rAAV, recombinant adeno-associated viruses.
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rAAV expression has no detectable effect on endogenous miRNA 
expression or function.

endogenous mirnAs silence rAAV transduction by 
site-specific cleavage of transgene mrnA
To determine how miRNAs suppress expression of transgenes 
delivered by rAAV in vivo, we characterized the transgene mRNA 
in liver by conventional PCR (Figure 4b), quantitative reverse-
transcription PCR (qRT-PCR) (Figure 4c), Northern hybridiza-
tion (Figure 4d,e), and rapid amplification of 5′ complimentary 
DNA (cDNA) ends (5′ RACE; Figure 4f). When we used primers 
that amplify the region between the 3′ end of nLacZ (A+F primer) 
and the 5′ end of the poly(A) signal (A+R primer), an amplicon 
that spans the miRNA-biding sites, we detected a 145 basepair 
(bp) product after 26 cycles of amplification for the samples that 

received control rAAV. An additional six cycles of amplifica-
tion were required to detect a weak 220 bp band for the samples 
transduced by rAAV containing three miR-122-binding sites. 
These data are consistent with low levels of intact nLacZ mRNA 
(Figure 4a,b).

To quantitatively assess the extent of the miRNA-directed 
repression of the transgene transcripts, we performed qRT-
PCR using either oligo(dT) or random hexamer primers for 
reverse-transcription and PCR primer pairs that span either a 5′ 
(nLacZ5′F/5′R), or 3′ (nLacZ 3′F/3′R) region of the nLacZ coding 
sequence (Figure 4a). We examined the levels of nLacZ mRNA 
with intact 5′ and 3′ ends in total liver RNA extracted from four 
animals that received the control rAAV9CBnLacZ and four that 
received rAAV9CBnLacZ containing three miR-122-binding 
sites in the 3′ UTR. We observed reductions ranging from 3 ± 1 
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(random hexamer) to 7 ± 1 (oligo[dT])-fold in nLacZ mRNA 
with an intact 3′ end in the animals that had received rAAV9 
containing miR-122-binding sites, relative to the control. In con-
trast, we detected little or no decrease in nLacZ mRNA with an 
intact 5′ end for the same samples using the 5′F/5′R primer pair 
(Figure 4c). Our results suggest that the primary mode of turn-
over of the mRNA that has been cleaved by a miRNA is 3′-to-5′ 
exonucleolytic degradation.

To further characterize the fate of the transgene mRNA tar-
geted by miR-1 or miR-122, we performed Northern blot anal-
yses. A transgene probe binding to the 5′ end of nLacZ mRNA 
detected a ~3.4 kb RNA in an animal injected with control 
 rAAV9CbnLacZ, the expected size of the of the full-length nLacZ 
transcript; a slightly larger band was detected in the liver sample 
from a mouse treated with rAAV9CBnLacZ bearing three miR-
1-binding sites (Figure 4a,d). In contrast to the single transcript 
detected for the rAAV9 expressing nLacZ bearing three miR-1-
binding sites, two RNAs of different sizes were detected for the 
rAAV expressing nLacZ bearing three miR-122 sites (Figure 4d). 

The lengths of these transcripts suggest that the longer transcript 
likely represents the full-length mRNA, whereas the shorter, more 
abundant transcript corresponds to 5′ fragments of nLacZ RNA 
cleaved by miR-122 at the corresponding miR-122-binding sites 
in the 3′ UTR (Figure 4d).

To confirm this finding, we repeated the Northern analysis 
using an RNA probe spanning a portion of 3′ UTR of the transgene 
mRNA. In addition to detecting full-length nLacZ transcripts in 
the samples transduced by rAAV9 lacking miRNA-binding sites, 
two closely migrating species smaller than the 281 nucleotide RNA 
marker were detected. The size of these fragments is consistent 
with miRNA-directed 3′ cleavage products of the nLacZ mRNA 
(Figure 4e). These two 3′ cleavage products were also detected by 
gel electrophoresis of the product from the 5′ RACE experiment 
described below (Figure 4f).

To determine whether such target cleavage occurs in vivo when 
the nLacZ transcript contained miR-1 or miR-122-binding sites, we 
performed rapid amplification of 5′ cDNA ends (5′ RACE). Figure 5 
presents the sequences of 21 clones recovered using 5′ RACE from 
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liver RNA (Figure 5a) and 22 clones isolated from heart RNA 
(Figure 5b) from the animals injected with rAAV9 in which the 
nLacZ 3′ UTR contained three miR-1 and three miR-122-binding 
sites. In liver, we detected the sequence signatures for miR-122-
 directed cleavage of the transgene mRNA at each miR-122-binding 
site: 5% for the first binding site, 48% for the second binding site, 
and 43% for the third binding site. All 5′ ends mapped to the phos-
phate that lies between the target nucleotides that pair with positions 
10 and 11 of the sequence perfectly complementary to miR-122, the 
precise site cleaved by small RNAs bound to Argonaute proteins in 
all eukaryotes24 (Figure 5a). Similar results were obtained in the 
heart for the miR-1 sites (Figure 5b).

Table 1 presents an expanded 5′ RACE analysis for addi-
tional vector groups. We note that none of the 5′ RACE products 
sequenced corresponded to miR-1-directed site-specific cleavage in 
liver or miR-122-directed site-specific cleavage in heart (Table 1). 
Although no cleavage was detected within  miR-1-binding sites 

in the liver, some clones from heart were cleaved within the 
 miR-122-binding sites, but not at the hallmark position for miRNA-
directed cleavage.

Intravascularly delivered rAAV9 can be efficiently 
controlled by endogenous mirnAs
Recent studies suggest that high doses of self-complementary AAV9 
(scAAV9), delivered intravascularly efficiently transduce the CNS 
in both mice and cats.11,12 However, intravenous administration of 
such vectors also transduces liver, heart, and pancreas. We added 
miRNA-1 and miRNA-122-binding sites into the scAAV9CB 
enhanced GFP (EGFP) vector genome and injected 10-week-old 
C57BL/6 male mice with 2 × 1014 GC/kg. After 3 weeks, we pre-
pared 40 µm sections of brain and spinal cord and 8 µm sections 
of liver, heart, and skeletal muscle and examined EGFP protein 
expression. As reported previously,10–13 intravenously delivered 
scAAV9CBEGFP efficiently transduced the CNS; EGFP was 
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readily detectable in the thalamus region of the brain and the cer-
vical region of the spinal cord, but also in non-CNS tissues such as 
liver, heart, and muscle (Figure 6a). In contrast, transgene expres-
sion in those non-CNS tissues was reduced when miR-1 and miR-
122-binding sites were included in the transgene; EGFP expression 
was unaltered in the CNS, where miR-1 and miR-122 are not pres-
ent (Figure 6a). We also used qRT-PCR to measure the differential 
expression of the miRNA-repressed EGFP transgene in brain (41.2 
± 7.7%), liver (3.0 ± 0.5%), heart (0.4 ± 0.1%), and muscle (1.3 ± 
0.4%), relative to the EGFP transgene lacking miRNA-binding sites 
(Figure 6b). To eliminate changes caused by variations in trans-
duction efficiency between experiments, we normalized the data 
to the number of vector genomes detected in the experimental 
and control samples. Like the microscopic analyses of native EGFP 
expression, the qRT-PCR data show that the presence of miR-122- 
or miR-1-binding sites reduced transgene expression in liver (20-
fold), heart (100-fold), and muscle (50-fold), but did not detectably 
alter transgene expression in brain.

dIscussIon
Discovery that rAAV9 can efficiently cross the blood–brain barrier 
to deliver genes to the CNS represented a major advance toward 
the goal of developing gene therapy for CNS disorders.12,14 Here, 
we report that rAAV9 can be engineered so that endogenous miR-
NAs repress transgene expression outside the CNS. This strategy 

provides another step toward the development of systematically 
deliverable, CNS-targeted rAAV-based neurotherapeutics.

Recent advances in AAV vector development have substan-
tially improved primate AAV vectors that achieve efficient and 
stable transvascular transduction in multiple tissues simultane-
ously.6,7 For example, systemic delivery of rAAV9 achieves exten-
sive and robust transduction of astrocytes throughout the CNS of 
adult mice.11,12 This unique feature of rAAV9 promises to provide 
a protective therapy for the degenerating neurons associated with 
Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral 
sclerosis, by expressing neurotrophic growth factors such as insu-
lin-like growth factor, brain-derived neurotrophic factor or glial-
derived neurotrophic factor in the transduced astrocytes.28 Yet, 
non-CNS expression derived from the peripheral tissues trans-
duced by systemically delivered rAAV9 could lead to long-term 
circulation of super-physiological and potentially toxic levels of 
those growth factors.29–31 Thus, in some applications, CNS-directed 
gene transfer may also cause toxicity and immune responses if the 
transgene is expressed outside the CNS.

Achieving transgene expression in only the target tissues is vital 
for the clinical development of safe CNS gene delivery. Here, we 
have shown that endogenous miRNAs can be harnessed to restrict 
the tissue- and cell-type specificity of rAAV expression, as was 
initially shown for lentiviral vectors.16 Our data demonstrate that 
endogenous miRNAs can effectively repress transgene expression 

table 1 summary of micrornA-guided transgene mrnA cleavage in mouse liver and heart

mir Bs cleavage Position

cleavage site

Between  
10 and 11 nt

Between  
17 and 18 nt

Between  
18 and 19 nt

random  
site

Liver 1 Copy of miR-122 BS (21 clones) 1 17/21 81% ND ND 19%

3 Copies of miR-122 BS (11 clones) 1 ND 100% ND ND 0%

2 4/11

3 7/11

3 Copies each of miR-1 and miR-122  
BS in a single vector (21 clones)

miR-1 3x BS 1 ND ND ND ND 0%

2 ND

3 ND

miR-122 3x BS 1 1/21 95% ND ND 5%

2 10/21

3 9/21

Heart 1 Copy of miR-1BS (12 clones) 1 12/12 100% ND ND 0%

3 Copies of miR-1BS (21 clones) 1 ND 80% 4/21 20% ND 0%

2 16/21 ND

3 1/21 ND

3 Copies each of miR-1 and miR-122  
BS in a single vector (22 clones)

miR-122 3x BS 1 ND ND ND 1/22 14% 4%

2 ND 1/22

3 ND ND

miR-1 3x BS 1 1/22 73% ND 9% ND 0%

2 7/22 1/22

3 8/22 1/22

Abbreviations: BS, binding site; miR, microRNA; ND, not detected.
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from rAAV. In both heart and liver, the miRNAs repressed trans-
gene expression by directing endonucleolytic cleavage of the trans-
gene mRNA (Figure 7). Importantly, miRNA regulation of rAAV 
expression did not perturb the expression or function of the cor-
responding endogenous miRNA, allowing transgene expression 
to be restricted to the CNS in mice. Our data suggest that a strat-
egy that combines multiple binding sites for  miRNAs expressed 
in the periphery but not the CNS may enable the development of 
safer, CNS-specific gene therapy vectors. In the future, validation 

of miRNA-mediated restriction of rAAV transgene expression in 
large animal models is required to pave the way for the develop-
ment of intravascularly delivered rAAV-based gene therapy to 
treat disorders that affect the CNS.

MAterIAls And Methods
Vector design, construction, and production. Perfectly complementary 
miRNA-binding sites were designed based on the annotated miR-1 and 
miR-122 sequences in miRBase32 and inserted into the BstBI restriction 
site in the 3′ UTR of the nLacZ expression cassette of the ubiquitously 
expressed pAAVCB nuclear-targeted β-galactosidase (nLacZ) plasmid 
using synthetic oligonucleotides (Figure 4a and Supplementary Table S1). 
This vector uses a hybrid cytomegalovirus enhancer/CB promoter cassette 
that is active in most cells and tissues. To express miR-122 and miR-1, 
 pri-miR-122 and pri-miR-1 fragments were amplified by PCR from C57/
B6 mouse genomic DNA (Supplementary Table S1) and inserted into 
the XbaI restriction site 3′ to a firefly luciferase cDNA in the pAAVCBF-
Luc plasmid. The identity of each pri-miRNA was verified by sequencing. 
AAV9 vectors used in this study were generated, purified, and titered as 
described.33

Cell culture and transfection. HEK-293 and HuH7 cells were cultured in 
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine 
serum and 100 mg/l of penicillin-streptomycin (Hyclone, South Logan, 
UT). Cells were maintained in a humidified incubator at 37 °C and 5% 
CO2. Plasmids were transiently transfected using Lipofectamine 2000 
(Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions.

Mouse studies. Male C57BL/6 mice (Charles River Laboratories, 
Wilmington, MA) were obtained and maintained and all animal procedures 
performed according to the guidelines of the Institutional Animal Care and 
Use Committee of the University of Massachusetts Medical School. To moni-
tor lipid profiles of the study animals, serum samples were collected 4 weeks 
after rAAV9 injection and analyzed for total cholesterol, high-density lipo-
protein and low-density lipoprotein on a COBAS C 111 analyzer (Roche 
Diagnostics, Lewes, UK). To evaluate endogenous miRNA-mediated, 
CNS-restricted EGFP gene transfer, 10-week-old male C57BL/6 mice were 
injected intravenously (tail vein) with AAV9CBnLacZ-[miR-122-binding 
site (BS)1], AAV9CBnLacZ-(miR-122BS)3, AAV9CBnLacZ-(miR-1BS)1, 
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Figure 6 endogenous mirnA-repressed, cns-directed eGFP gene 
transfer by systemically delivered rAAV9. Ten-week-old male C57BL/6 
mice were injected intravenously with scAAV9CBEGFP or scAAV9CBnLacZ-
(miR-1BS)3–(miR-122BS)3 at a dose of 2 × 1014 genome copies per kg (GC/
kg) body weight. The animals were necropsied 3 weeks later for whole 
body fixation by transcardiac perfusion. (a) Brain, spinal cord, liver, heart, 
and muscle were harvested for cryosectioning, immunofluorescent stain-
ing for EGFP (brain and cervical spinal cord), and fluorescence micros-
copy to detect EGFP. Total cellular DNA and RNA were extracted from 
brain, liver, heart and muscle to measure the amount of persistent vector 
genome by qPCR and EGFP mRNA by qRT-PCR. (b) For each tissue, the 
relative abundance of the EGFP mRNA containing miRNA-binding sites 
was compared to that of the EGFP mRNA lacking miRNA-binding sites. 
For each sample, mRNA abundance was normalized to the amount of 
vector genome detected in the tissue. EGFP, enhanced green fluorescent 
protein; miRNA, microRNA; nLacZ, β-galactosidase reporter transgene; 
qRT-PCR, quantitative reverse-transcription PCR; rAAV, recombinant 
adeno-associated viruses.
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AAV9CBnLacZ-(miR-1BS)3, AAV9CBnLacZ-(miR-1BS)1-(miR-122BS)1, 
and AAV9CBnLacZ-(miR-1BS)3-(miR-122BS)3122BS)3, respectively, at 
5 × 1013 GC/kg body weight) or scAAV9CBEGFP at 2 × 1014 GC/kg body 
weight). Animals receiving nLacZ vectors were necropsied 4 weeks later; 
8 µm cryosections of liver, heart, and pancreas tissues were prepared 
for X-gal-histochemical staining. Animals that received EGFP vectors 
were necropsied 3 weeks later and fixed by transcardial perfusion with 
4% (wt/vol) paraformaldehyde. Brain, spinal cord, liver, heart, and muscle 
were harvested for cryosectioning. Brain and cervical spinal cord tissue 
were stained as floating sections in a 12-well plate using rabbit anti-EGFP 
antibody (Invitrogen) diluted 1:500, followed by goat anti-rabbit second-
ary antibody (Invitrogen) diluted 1:400. Outside the CNS, EGFP expression 
was detected directly by fluorescence. EGFP and antibody fluorescence was 
recorded using a Nikon TE-2000S inverted microscope at ×10 magnifica-
tion and an exposure time of 3 seconds for liver, heart, and muscle, and 
5 seconds for thalamus (brain) and cervical spinal cord.

Vector genome quantification by qPCR. Genome DNA was extracted 
from the selected tissues using QIAamp DNA Mini Kit (Qiagen, West 
Sussex, UK), according to the manufacturer’s instructions. Quantitative 
PCR were carried out in triplicate using 50 ng DNA and 0.3 µmol/l EGFP-
specific primers (EGFP-F and EGFP-R) using GoTaq qPCR master mix 
(Promega, Madison, WI) in a StepOne Plus real-time PCR instrument 
(Applied Biosystems, Foster City, CA).

qRT-PCR analysis. RNA was extracted using Trizol (Invitrogen), accord-
ing to the manufacturer’s instructions. Total RNA (0.5–1.0 µg) was 
primed with random hexamers or oligo(dT) and reverse-transcribed with 
MultiScribe Reverse Transcriptase (Applied Biosystems). Quantitative PCR 
were performed in triplicate with 0.3 µmol/l gene-specific primer pairs 
(nLacZ5′F/5′R, nLacZ 3′F/3′R, cyclinG1F/R and EGFP-F/EGFP-R) using 
the GoTaq qPCR master mix in a StepOne Plus Real-time PCR device. The 
specificity of qRT-PCR products derived from the 5′ and 3′ ends of nLacZ 
mRNA was confirmed by gel electrophoresis.

Northern blot analysis. Total RNA was extracted from mouse liver 
and analyzed by Northern hybridization.34 To detect nLacZ mRNA, a 
618 bp fragment of nLacZ cDNA was isolated by NcoI and PciI diges-
tion of pAAVCBnLacZ and labeled with α-32P dCTP by random prim-
ing (Takara, Shiga, Japan). To detect 3′ fragments of the cleaved nLacZ 
mRNA, an 111 bp fragment of the poly(A) sequence in the vector genome 
was cloned into pCR4-TOPO (Invitrogen) for preparation of antisense 
RNA probe labeled with α-32P CTP during in vitro transcription using the 
Riboprobe System T7 kit (Promega). To detect miR-122, miR-26a, miR-22, 
and let-7 or U6 in total liver RNA, small RNAs were resolved by dena-
turing 15% polyacrylamide gels, transferred to Hybond N+ membrane 
(Amersham BioSciences, Pittsburgh, PA), and crosslinked with 254 nm 
light (Stratagene, La Jolla, CA). Synthetic oligonucleotides, 5′ end-labeled 
with γ-32P ATP using T4 polynucleotide kinase (New England Biolabs, 
Beverly, MA), were used as DNA probes (Supplementary Table S1) and 
hybridized in Church buffer (0.5 mol/l NaHPO4, pH 7.2, 1 mmol/l EDTA, 
7% (w/v) sodium dodecyl sulphate) at 37 °C. Membranes were washed 
using 1× SSC (150 mM sodium chloride, 15 mM sodium citrate), 0.1% 
sodium dodecyl sulphate buffer, and then visualized using an FLA-5100 
Imager (Fujifilm, Tokyo, Japan).

Western blot analysis. Proteins were extracted with radioimmunopre-
cipitation assay buffer [25 mmol/l Tris–HCl, pH 7.6, 150 mmol/l NaCl, 1% 
(vol/vol) NP-40, 1% (wt/vol) sodium deoxycholate, 0.1% (w/v) sodium 
dodecyl sulphate] containing a protease inhibitor mixture (Boston BP, 
Boston, MA). Protein concentration was determined using the Bradford 
method (Bio-Rad, Melville, NY). Protein samples, 50 µg each, were loaded 
onto 12% polyacrylamide gels, electrophoresed, and transferred to nitro-
cellulose membrane (Amersham BioSciences). Briefly, membranes were 
blocked with blocking buffer (LI-COR Biosciences, Lincoln, NE) at room 

temperature for 2 hours, followed by incubation with either anti-GAPDH 
(Millipore, Billerica, MA), anti-cyclin G1 (Santa Cruz Biotechnology, Santa 
Cruz, CA) or anti-calmodulin (Millipore) for 2 hours at room temperature. 
After three washes with PBS containing 0.1% (vol/vol) Tween-20, mem-
branes were incubated with secondary antibodies conjugated to LI-COR 
IRDye for 1 hour at room temperature, and then antibodies detected using 
the Odyssey Imager (LI-COR).

β-Galactosidase assay. Proteins were extracted with radioimmunoprecipi-
tation assay buffer and quantified as described above. Fifty micrograms of 
protein was used for each β-galactosidase assay using the Galacto-Star System 
(Applied Biosystems), according to the manufacturer’s instructions.

5′ RACE. 5′ RACE was performed as described.35 The 5′ RACE Outer 
Primer and the nLacZ gene-specific primer bGHpolyAR (Supplementary 
Table S1) were used for the first round of nested PCR. The 5′ RACE Inner 
Primer and the nLacZ gene-specific primer nLacZpolyR, which is located 
near the stop codon of nLacZ cDNA, were used for the second round of 
nested PCR (Supplementary Table S1). PCR products were TOPO-cloned 
into pCR-4.0 (Invitrogen) and sequenced.

Statistical analysis. All results are reported as mean ± SD and compared 
between groups using the two-tailed Student’s t-test.

suPPleMentArY MAterIAl
Figure S1. Quantification of β-galactosidase activities in liver  tissue 
from animals that received rAAVnLacZ vectors with and without 
 miRNA-binding sites.
Table S1. Oligonucleotide primers and probes used in the study.
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