24 research outputs found
A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones
Many cyclone detection and tracking methods (CDTMs) have been developed in the past to study the climatology of extratropical cyclones. However, all CDTMs have different approaches in defining and tracking cyclone centers. This naturally leads to cyclone track climatologies with inconsistent physical characteristics. More than that, it is typical for CDTMs to produce a non-negligible number of tracks of weak atmospheric features, which do not correspond to large-scale or mesoscale vortices and can differ significantly between CDTMs. Lack of consensus in CDTM outputs and the inclusion of significant numbers of uncertain tracks therein have long prohibited the production of a commonly accepted reference dataset of extratropical cyclone tracks. Such a dataset could allow comparable results on the analysis of storm track climatologies and could also contribute to the evaluation and improvement of CDTMs. To cover this gap, we present a new methodological approach that combines overlapping tracks from different CDTMs and produces composite tracks that concentrate the agreement of more than one CDTM. In this study we apply this methodology to the outputs of 10 well-established CDTMs which were originally applied to ERA5 reanalysis in the 42-year period of 1979-2020. We tested the sensitivity of our results to the spatiotemporal criteria that identify overlapping cyclone tracks, and for benchmarking reasons, we produced five reference datasets of subjectively tracked cyclones. Results show that climatological numbers of composite tracks are substantially lower than the ones of individual CDTMs, while benchmarking scores remain high (i.e., counting the number of subjectively tracked cyclones captured by the composite tracks). Our results show that composite tracks tend to describe more intense and longer-lasting cyclones with more distinguished early, mature and decay stages than the cyclone tracks produced by individual CDTMs. Ranking the composite tracks according to their confidence level (defined by the number of contributing CDTMs), it is shown that the higher the confidence level, the more intense and long-lasting cyclones are produced. Given the advantage of our methodology in producing cyclone tracks with physically meaningful and distinctive life stages, we propose composite tracks as reference datasets for climatological research in the Mediterranean. The Supplement provides the composite Mediterranean tracks for all confidence levels, and in the conclusion we discuss their adequate use for scientific research and applications
A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones
Many cyclone detection and tracking methods (CDTMs) have been developed in
the past to study the climatology of extratropical cyclones. However, all
CDTMs have different approaches in defining and tracking cyclone centers.
This naturally leads to cyclone track climatologies with inconsistent physical
characteristics. More than that, it is typical for CDTMs to produce a
non-negligible number of tracks of weak atmospheric features, which do not
correspond to large-scale or mesoscale vortices and can differ significantly
between CDTMs. Lack of consensus in CDTM outputs and the inclusion of
significant numbers of uncertain tracks therein have long prohibited the
production of a commonly accepted reference dataset of extratropical cyclone
tracks. Such a dataset could allow comparable results on the analysis of
storm track climatologies and could also contribute to the evaluation and
improvement of CDTMs.
To cover this gap, we present a new methodological approach that combines
overlapping tracks from different CDTMs and produces composite tracks that
concentrate the agreement of more than one CDTM. In this study we apply this
methodology to the outputs of 10 well-established CDTMs which were
originally applied to ERA5 reanalysis in the 42-year period of 1979–2020. We
tested the sensitivity of our results to the spatiotemporal criteria that
identify overlapping cyclone tracks, and for benchmarking reasons, we
produced five reference datasets of subjectively tracked cyclones. Results
show that climatological numbers of composite tracks are substantially lower
than the ones of individual CDTMs, while benchmarking scores remain high
(i.e., counting the number of subjectively tracked cyclones captured by the
composite tracks). Our results show that composite tracks tend to describe
more intense and longer-lasting cyclones with more distinguished early,
mature and decay stages than the cyclone tracks produced by individual
CDTMs. Ranking the composite tracks according to their confidence level
(defined by the number of contributing CDTMs), it is shown that the higher
the confidence level, the more intense and long-lasting cyclones are
produced. Given the advantage of our methodology in producing cyclone tracks
with physically meaningful and distinctive life stages, we propose composite
tracks as reference datasets for climatological research in the
Mediterranean. The Supplement provides the composite
Mediterranean tracks for all confidence levels, and in the conclusion we
discuss their adequate use for scientific research and applications.</p
Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women.
Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants
Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry.
BACKGROUND: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. METHODS: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. RESULTS: In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. CONCLUSIONS: Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts
Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry
Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10 ) and AC058822.1 (P = 1.47 × 10 ), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10 ), demonstrating the importance of diversifying study cohorts. [Abstract copyright: © 2023. The Author(s).
Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women
Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants
Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis.
BACKGROUND: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. METHODS: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. RESULTS: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p = 5.09 × 10-4], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p = 4.02 × 10-4), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p = 5.05 × 10-19) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p = 9.22 × 10-6). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2-h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. CONCLUSIONS: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer
Association analysis identifies 65 new breast cancer risk loci
Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. Genotyping of the OncoArray was principally funded from three sources: the PERSPECTIVE project, funded by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the ‘Ministère de l’Économie, de la Science et de l’Innovation du Québec’ through Genome Québec, and the Quebec Breast Cancer Foundation; the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative and Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE) project (NIH Grants U19 CA148065 and X01HG007492); and Cancer Research UK (C1287/A10118 and C1287/A16563). BCAC is funded by Cancer Research UK (C1287/A16563), by the European Community’s Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS) and by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreements 633784 (B-CAST) and 634935 (BRIDGES). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program, and the Ministry of Economic Development, Innovation and Export Trade of Quebec, grant PSR-SIIRI-701. Combining of the GWAS data was supported in part by The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative grant U19 CA 148065 (DRIVE, part of the GAME-ON initiative)