161 research outputs found

    Interannual variability of tropical cyclone activity along the Pacific coast of North America

    Get PDF
    RESUMEN Se describe la variabilidad interanual de ciclones tropicales cercanos a la costa en el Pacífico nororiental, utilizando para ello un conjunto de datos elaborado con reportes oceánicos y atmosféricos de EUA y México correspondientes al periodo . Los ciclones cercanos a la costa se enumeran de forma mensual, lo que permite distinguir la variabilidad interanual en distintas fases de la temporada de ciclones de mayo a noviembre. De acuerdo con estos datos, el número de ciclones tropicales que impactan la costa del Pacífico de mayo a julio (los primeros meses de la temporada de ciclones tropicales) en años correspondientes a La Niña, cuando las temperaturas marinas superficiales en el Pacífico ecuatorial son anormalmente frías, es mayor que en años correspondientes a El Niño. La diferencia en la cantidad de ciclones tropicales de inicio de temporada entre años de La Niña y El Niño fue especialmente notable a mediados del siglo XX, cuando se registró un incremento de las temperaturas ecuatoriales bajas, de acuerdo con un índice de la oscilación decenal del Pacífico. Los mapas combinados de años con conteos bajos y altos de ciclones tropicales cercanos a la costa muestran que las anomalías de la circulación atmosférica vinculadas con bajas temperaturas marinas superficiales en el Pacífico ecuatorial oriental, son consistentes con la trayectoria dominante de los ciclones tropicales hacia el noreste con dirección a la costa occidental de México. ABSTRACT The interannual variability of near-coastal eastern North Pacific tropical cyclones is described using a data set of cyclone tracks constructed from U.S. and Mexican oceanic and atmospheric reports for the period 1951-2006. Near-coastal cyclone counts are enumerated monthly, allowing us to distinguish interannual variability during different phases of the May-November tropical cyclone season. In these data more tropical cyclones affect the Pacific coast in May-July, the early months of the tropical cyclone season, during La Niña years, when equatorial Pacific sea surface temperatures are anomalously cool, than during El Niño years. The difference in early season cyclone counts between La Niña and El Niño years was particularly Atmósfera 26(2), 149-162 (2013) 150 D. S. Gutzler et al. pronounced during the mid-twentieth century epoch when cool equatorial temperatures were enhanced as described by an index of the Pacific Decadal Oscillation. Composite maps from years with high and low near-coastal cyclone counts show that the atmospheric circulation anomalies associated with cool sea surface temperatures in the eastern equatorial Pacific are consistent with preferential steering of tropical cyclones northeastward toward the west coast of Mexico

    A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene

    Full text link
    Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281

    Simulations of the 2004 North American Monsoon: NAMAP2

    Get PDF
    The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.open131

    Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany

    Get PDF
    AbstractDecisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government.The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5milliontons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials.In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification

    Chapter 10 - Detection and attribution of climate change: From global to regional

    Get PDF
    This chapter assesses the causes of observed changes assessed in Chapters 2 to 5 and uses understanding of physical processes, climate models and statistical approaches. The chapter adopts the terminology for detection and attribution proposed by the IPCC good practice guidance paper on detection and attribution (Hegerl et al., 2010) and for uncertainty Mastrandrea et al. (2011). Detection and attribution of impacts of climate changes are assessed by Working Group II, where Chapter 18 assesses the extent to which atmospheric and oceanic changes influence ecosystems, infrastructure, human health and activities in economic sectors

    Fractional snow cover in the Colorado and Rio Grande basins, 1995-2002

    Full text link
    A cloud-masked fractional snow-covered area (SCA) product gridded at 1 km was developed from the advanced very high resolution radiometer for the Colorado River and upper Rio Grande basins for 1995-2002. Cloud cover limited SCA retrievals on any given 1-km2 pixel to on average once per week. There were sufficient cloud-free scenes to map SCA over at least part of the basins up to 21 days per month, with 3 months having only two scenes sufficiently cloud free to process. In the upper Colorado and upper Grande, SCA peaked in February-March. Maxima were 1-2 months earlier in the lower Colorado. Averaged over a month, as much as 32% of the upper Colorado and 5.5% of the lower Colorado were snow covered. Snow cover persisted longest at higher elevations for both wet and dry years. Interannual variability in snow cover persistence reflected wet-dry year differences. Compared with an operational (binary) SCA product produced by the National Operational Hydrologic Remote Sensing Center, the current products classify a lower fraction of pixels as having detectable snow and being cloud covered (5.5% for SCA and 6% for cloud), with greatest differences in January and June in complex, forested terrain. This satellite-derived subpixel determination of snow cover provides the potential for enhanced hydrologic forecast abilities in areas of complex, snow-dominated terrain. As an example, we merged the SCA product with interpolated ground-based snow water equivalent (SWE) to develop a SWE time series. This interpolated, masked SWE peaked in April, after SCA peaked and after some of the lower-elevation snow cover had melted. Copyright 2008 by the American Geophysical Union

    Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings

    Get PDF
    The degree of randomness, or partial order, present in two-dimensional supramolecular arrays of isophthalate tetracarboxylic acids is shown to vary due to subtle chemical changes such as the choice of solvent or small differences in molecular dimensions. This variation may be quantified using an order parameter and reveals a novel phase behaviour including random tiling with varying critical properties as well as ordered phases dominated by either parallel or non-parallel alignment of neighbouring molecules, consistent with long-standing theoretical studies. The balance between order and randomness is driven by small differences in the intermolecular interaction energies, which we show, using numerical simulations, can be related to the measured order parameter. Significant variations occur even when the energy difference is much less than the thermal energy highlighting the delicate balance between entropic and energetic effects in complex self-assembly processes

    Nitrogenated holey two-dimensional structures

    Get PDF
    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C 2 N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 10 7, with calculated and experimental bandgaps of approximately 1.70 and 1.96eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C 2 N-h2D crystal has potential for use in practical applications.open111
    corecore