236 research outputs found

    Spatial distribution of CD3- and CD8-positive lymphocytes as pretest for POLE wild-type in molecular subgroups of endometrial carcinoma.

    Get PDF
    INTRODUCTION Over the years, the molecular classification of endometrial carcinoma has evolved significantly. Both POLEmut and MMRdef cases share tumor biological similarities like high tumor mutational burden and induce strong lymphatic reactions. While therefore use case scenarios for pretesting with tumor-infiltrating lymphocytes to replace molecular analysis did not show promising results, such testing may be warranted in cases where an inverse prediction, such as that of POLEwt, is being considered. For that reason we used a spatial digital pathology method to quantitatively examine CD3+ and CD8+ immune infiltrates in comparison to conventional histopathological parameters, prognostics and as potential pretest before molecular analysis. METHODS We applied a four-color multiplex immunofluorescence assay for pan-cytokeratin, CD3, CD8, and DAPI on 252 endometrial carcinomas as testing and compared it to further 213 cases as validation cohort from a similar multiplexing assay. We quantitatively assessed immune infiltrates in microscopic distances within the carcinoma, in a close distance of 50 microns, and in more distant areas. RESULTS Regarding prognostics, high CD3+ and CD8+ densities in intra-tumoral and close subregions pointed toward a favorable outcome. However, TCGA subtyping outperforms prognostication of CD3 and CD8 based parameters. Different CD3+ and CD8+ densities were significantly associated with the TCGA subgroups, but not consistently for histopathological parameter. In the testing cohort, intra-tumoral densities of less than 50 intra-tumoral CD8+ cells/mm2 were the most suitable parameter to assume a POLEwt, irrespective of an MMRdef, NSMP or p53abn background. An application to the validation cohort corroborates these findings with an overall sensitivity of 95.5%. DISCUSSION Molecular confirmation of POLEmut cases remains the gold standard. Even if CD3+ and CD8+ cell densities appeared less prognostic than TCGA, low intra-tumoral CD8+ values predict a POLE wild-type at substantial percentage rates, but not vice versa. This inverse correlation might be useful to increase pretest probabilities in consecutive POLE testing. Molecular subtyping is currently not conducted in one-third of cases deemed low-risk based on conventional clinical and histopathological parameters. However, this percentage could potentially be increased to two-thirds by excluding sequencing of predicted POLE wild-type cases, which could be determined through precise quantification of intra-tumoral CD8+ cells

    Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion

    Get PDF
    G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.</p

    Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes

    Get PDF
    The emergence of multicellular animals could only take place once evolution had produced molecular mechanisms for cell adhesion and communication. Today, all metazoans express integrin-type adhesion receptors and receptors for growth factors. Integrins recognize extracellular matrix proteins and respective receptors on other cells and, following ligand binding, can activate the same cellular signaling pathways that are regulated by growth factor receptors. Recent reports have indicated that the two receptor systems also collaborate in many other ways. Here, we review the present information concerning the role of integrins as assisting growth factor receptors and the interplay between the receptors in cell signaling and in the orchestration of receptor recycling

    Syndecan-4 phosphorylation is a control point for integrin recycling

    Get PDF
    Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration
    • …
    corecore