184 research outputs found
A NEW HASPIN ROLE AT THE INTERSECTION BETWEEN MITOSIS AND CELLULAR POLARIZATION
Haspin is an atypical protein kinase; in several organisms it phosphorylates histone H3 on Thr3 and is involved in chromosome segregation. In Saccharomyces cerevisiae, H3Thr3 phosphorylation has never been observed and the function of haspin is unknown. We report that deletion of both ALK1 and ALK2, encoding the haspin paralogs, causes the mislocalization of polarisome components. Following a transient mitotic arrest, this leads to an overly polarized actin distribution within the bud, where the mitotic spindle is consequently pulled. Here, spindle elongates generating anucleated mothers and binucleated daughters. Reducing the intensity of the bud-directed pulling forces partially restores proper cell division, suggesting that haspin controls the localization of polarity cues to preserve the coordination between polarization and the cell cycle, and to tolerate transient mitotic arrests. The evolutionary conservation of haspin and of the polarization pathways suggest that this function of haspin may be likely shared with other eukaryotic cells. We thus investigated a possible conservation of this control mechanism in mammalian cells, where indeed we found that haspin governs the orientation of the mitotic spindle thanks to its contribution to actin organizatio
NMR interaction studies of Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc with influenza-virus hemagglutinin expressed in transfected human cells
The emergence of escape-mutants of influenza hemagglutinin (HA) following vaccination compels the yearly re-formulation of flu vaccines. Since binding the sialic acid receptor remains in all cases essential for infection, small-molecule inhibitors of HA binding to sialic acid could be interesting therapeutic complements or alternatives to immuno-prophylaxis in the control of flu epidemics. In this work, we made use of NMR spectroscopy to study the interaction between a derivative of sialic acid (the Neu5Ac-\u3b1-(2,6)-Gal-\u3b2-(1-4)-GlcNAc trisaccharide) and HAs (H1 and H5) from human and avian strains of influenza virus, directly expressed on the surface of stable transfected 293 T human cells. The HAs were shown to retain their native trimeric conformation and binding properties. Exploiting the magnetization transfer between the proteins and the ligand, we obtained evidence of the binding event and mapped the (non-identical) sugar epitopes recognized by the two HA species. The rapid and reliable method for screening sialic acid-related HA ligands we have developed could yield useful information for an efficient drug design
Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization
Cell polarization is of paramount importance for proliferation, differentiation, development, and it is altered during carcinogenesis. Polarization is a reversible process controlled by positive and negative feedback loops. How polarized factors are redistributed is not fully understood and is the focus of this work. In Saccharomyces cerevisiae, mutants defective in haspin kinase exhibit stably polarized landmarks and are sensitive to mitotic delays. Here, we report a new critical role for haspin in polarisome dispersion; failure to redistribute polarity factors, in turn, leads to nuclear segregation defects and cell lethality. We identified a mitotic role for GTP-Ras in regulating the local activation of the Cdc42 GTPase, resulting in its dispersal from the bud tip to a homogeneous distribution over the plasma membrane. GTP-Ras2 physically interacts with Cdc24 regulateing its mitotic distribution. Haspin is shown to promote a mitotic shift from a bud tip-favored to a homogenous PM fusion of Ras-containing vesicles. In absence of haspin, active Ras is not redistributed from the bud tip; Cdc24 remains hyperpolarized promoting the activity of Cdc42 at the bud tip, and the polarisome fails to disperse leading to erroneously positioned mitotic spindle, defective nuclear segregation, and cell death after mitotic delays. These findings describe new functions for key factors that modulate cell polarization and mitotic events, critical processes involved in development and tumorigenesis
Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: a systematic review and meta-analysis
Many aspects of care such as management of hypercoagulable state in COVID-19 patients, especially those admitted to intensive care units is challenging in the rapidly evolving pandemic of novel coronavirus disease 2019 (COVID-19). We seek to systematically review the available evidence regarding the anticoagulation approach to prevent venous thromboembolism (VTE) among COVID-19 patients admitted to intensive care units. Electronic databases were searched for studies reporting venous thromboembolic events in patients admitted to the intensive care unit receiving any type of anticoagulation (prophylactic or therapeutic). The pooled prevalence (and 95% confidence interval [CI]) of VTE among patients receiving anticoagulant were calculated using the random-effects model. Subgroup pooled analyses were performed with studies reported prophylactic anticoagulation alone and with studies reported mixed prophylactic and therapeutic anticoagulation. We included twelve studies (8 Europe; 2 UK; 1 each from the US and China) in our systematic review and meta-analysis. All studies utilized LMWH or unfractionated heparin as their pharmacologic thromboprophylaxis, either prophylactic doses or therapeutic doses. Seven studies reported on the proportion of patients with the previous history of VTE (range 0–10%). The pooled prevalence of VTE among ICU patients receiving prophylactic or therapeutic anticoagulation across all studies was 31% (95% CI 20–43%). Subgroup pooled analysis limited to studies reported prophylactic anticoagulation alone and mixed (therapeutic and prophylactic anticoagulation) reported pooled prevalences of VTE of 38% (95% CI 10–70%) and 27% (95% CI 17–40%) respectively. With a high prevalence of thromboprophylaxis failure among COVID-19 patients admitted to intensive care units, individualised rather than protocolised VTE thromboprophylaxis would appear prudent at interim
Sigh in supine and prone position during acute respiratory distress syndrome
Interventions aimed at recruiting the lung of patients with acute respiratory distress syndrome (ARDS) are not uniformly effective. Because the prone position increases homogeneity of inflation of the lung, we reasoned that it might enhance its potential for recruitment. We ventilated 10 patients with early ARDS (PaO2/FIO2, 121 +/- 46 mm Hg; positive end-expiratory pressure, 14 +/- 3 cm H2O) in supine and prone, with and without the addition of three consecutive "sighs" per minute to recruit the lung. Inspired oxygen fraction, positive end-expiratory pressure, and minute ventilation were kept constant. Sighs increased PaO2 in both supine and prone (p < 0.01). The highest values of PaO2 (192 +/- 41 mm Hg) and end-expiratory lung volume (1840 +/- 790 ml) occurred with the addition of sighs in prone and remained significantly elevated 1 hour after discontinuation of the sighs. The increase in PaO2 associated with the sighs, both in supine and prone, correlated linearly with the respective increase of end-expiratory lung volume (r = 0.82, p < 0.001). We conclude that adding a recruitment maneuver such as cyclical sighs during ventilation in the prone position may provide optimal lung recruitment in the early stage of ARDS
Runtime and aPTT predict venous thrombosis and thromboembolism in patients on extracorporeal membrane oxygenation: a retrospective analysis
BACKGROUND: Even though bleeding and thromboembolic events are major complications of extracorporeal membrane oxygenation (ECMO), data on the incidence of venous thrombosis (VT) and thromboembolism (VTE) under ECMO are scarce. This study analyzes the incidence and predictors of VTE in patients treated with ECMO due to respiratory failure. METHODS: Retrospective analysis of patients treated on ECMO in our center from 04/2010 to 11/2015. Patients with thromboembolic events prior to admission were excluded. Diagnosis was made by imaging in survivors and postmortem examination in deceased patients. RESULTS: Out of 102 screened cases, 42 survivors and 21 autopsy cases [mean age 46.0 ± 14.4 years; 37 (58.7 %) males] fulfilling the above-mentioned criteria were included. Thirty-four patients (54.0 %) underwent ECMO therapy due to ARDS, and 29 patients (46.0 %) with chronic organ failure were bridged to lung transplantation. Despite systemic anticoagulation at a mean PTT of 50.6 ± 12.8 s, [VT/VTE 47.0 ± 12.3 s and no VT/VTE 53.63 ± 12.51 s (p = 0.037)], VT and/or VTE was observed in 29 cases (46.1 %). The rate of V. cava thrombosis was 15/29 (51.7 %). Diagnosis of pulmonary embolism prevailed in deceased patients [5/21 (23.8 %) vs. 2/42 (4.8 %) (p = 0.036)]. In a multivariable analysis, only aPTT and time on ECMO predicted VT/VTE. There was no difference in the incidence of clinically diagnosed VT in ECMO survivors and autopsy findings. CONCLUSIONS: Venous thrombosis and thromboembolism following ECMO therapy are frequent. Quality of anticoagulation and ECMO runtime predicted thromboembolic events
Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis
Passive measurement of sun-induced chlorophyll fluorescence (F) represents the most promising tool to quantify changes in photosynthetic functioning on a large scale. However, the complex relationship between this signal and other photosynthesis-related processes restricts its interpretation under stress conditions. To address this issue, we conducted a field campaign by combining daily airborne and ground-based measurements of F (normalized to photosynthetically active radiation), reflectance and surface temperature and related the observed changes to stress-induced variations in photosynthesis. A lawn carpet was sprayed with different doses of the herbicide Dicuran. Canopy-level measurements of gross primary productivity indicated dosage-dependent inhibition of photosynthesis by the herbicide. Dosage-dependent changes in normalized F were also detected. After spraying, we first observed a rapid increase in normalized F and in the Photochemical Reflectance Index, possibly due to the blockage of electron transport by Dicuran and the resultant impairment of xanthophyll-mediated non-photochemical quenching. This initial increase was followed by a gradual decrease in both signals, which coincided with a decline in pigment-related reflectance indices. In parallel, we also detected a canopy temperature increase after the treatment. These results demonstrate the potential of using F coupled with relevant reflectance indices to estimate stress-induced changes in canopy photosynthesis
Assessment of Fibrinolysis in Sepsis Patients with Urokinase Modified Thromboelastography
INTRODUCTION:
Impairment of fibrinolysis during sepsis is associated with worse outcome. Early identification of this condition could be of interest. The aim of this study was to evaluate whether a modified point-of-care viscoelastic hemostatic assay can detect sepsis-induced impairment of fibrinolysis and to correlate impaired fibrinolysis with morbidity and mortality.
METHODS:
This single center observational prospective pilot study was performed in an adult Intensive Care Unit (ICU) of a tertiary academic hospital. Forty consecutive patients admitted to the ICU with severe sepsis or septic shock were included. Forty healthy individuals served as controls. We modified conventional kaolin activated thromboelastography (TEG) adding urokinase to improve assessment of fibrinolysis in real time (UK-TEG). TEG, UK-TEG, plasminogen activator inhibitor (PAI)-1, thrombin-activatable fibrinolysis inhibitor (TAFI), d-dimer, DIC scores and morbidity (rated with the SOFA score) were measured upon ICU admission. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) of mortality at ICU discharge.
RESULTS:
UK-TEG revealed a greater impairment of fibrinolysis in sepsis patients compared to healthy individuals confirmed by PAI-1. TAFI was not different between sepsis patients and healthy individuals. 18/40 sepsis patients had fibrinolysis impaired according to UK-TEG and showed higher SOFA score (8 (6-13) vs 5 (4-7), p = 0.03), higher mortality (39% vs 5%, p = 0.01) and greater markers of cellular damage (lactate levels, LDH and bilirubin). Mortality at ICU discharge was predicted by the degree of fibrinolysis impairment measured by UK-TEG Ly30 (%) parameter (OR 0.95, 95% CI 0.93-0.98, p = 0.003).
CONCLUSIONS:
Sepsis-induced impairment of fibrinolysis detected at UK-TEG was associated with increased markers of cellular damage, morbidity and mortality
T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs
The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. © 2013 de Melo et al
- …