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Abstract 

The emergence of escape-mutants of Influenza Hemagglutinin following vaccination compels the yearly re-

formulation of flu vaccines. Since binding the sialic acid receptor remains in all cases essential for infection, small-

molecule inhibitors of hemagglutinin binding to sialic acid could be interesting therapeutic complements or 

alternatives to immuno-prophylaxis in the control of flu epidemics.  In this work, we made use of NMR 

spectroscopy to study the interaction between a derivative of sialic acid (the Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc 

trisaccharide) and hemagglutinins (H1 and H5) from human and avian strains of influenza virus, directly expressed 

on the surface of stable transfected 293T human cells. The hemagglutinins were shown to retain their native trimeric 

conformation and binding properties. Exploiting the magnetization transfer between the proteins and the ligand, we 

obtained evidence of the binding event and mapped the (non-identical) sugar epitopes recognized by the two 

hemagglutinin species. The rapid and reliable method for screening sialic acid-related hemagglutinin ligands we 

have developed could yield useful information for an efficient drug design. 

 

 

 

 

 

 

 

 

 



Introduction 

Influenza viruses are important respiratory pathogens causing significant morbidity, mortality and considerable 

economic losses in the recurrent yearly epidemics and much more devastatingly in the sporadic pandemic spreads. 

Influenza seasonal epidemics result in the death of 250,000 - 500,000 people every year (https://www.cdc.gov/flu), 

up to millions in specific pandemic years. Influenza viruses belong to the Ortomyxoviridae family and are formed by 

several genera: the most common being A, B and C. Most influenza serotypes are of avian origin. Although several 

of them have sporadically infected humans, only a few serotypes of influenza A virus (IAV) (bearing hemagglutinin 

variants H1, H2 and H3) have caused influenza pandemics in the last 100 years (Stevens et al., 2006a). Three viral 

surface proteins are embedded in the cell-derived virion membrane: hemagglutinin (HA), neuraminidase (NA) and 

the M2 proton channel protein. Based on the antigenicity of HA and NA, IAV can be further classified into different 

subtypes including 16 HA (H1–H16) and 9 NA (N1–N9) subtypes.  

M2 proton channel maintains pH across the viral envelope during cell entry and viral maturation. The first anti-

influenza virus drug, amantadine, is a specific blocker of the M2 H+ channel. Amantadin and its derivative have 

been widely abandoned due to virus resistance.  

HA binds to sialic-acid containing glycans on the surface of target cells. The binding triggers internalization of the 

virion into the host cell; NA releases the newly formed virus particles from an infected cell by nicking sialic acid 

residues to which the budding virion is bound (Skehel and Wiley, 2000; Xu et al, 2012).  

Based on structural studies of its highly conserved catalytic site (Colman et al, 1983; Varghese et al,1983), several 

competitive inhibitors of NA were developed. Two of them, oseltamivir (Tamiflu) and zanamivir (Relenza), have 

been approved worldwide as drugs. However, drug resistance due to the emergence of NA escape mutants is 

becoming widespread and the development of alternative anti-influenza drugs targeted to other components of the 

virus (including HA) are urgently needed (Jiang et al, 2010).  

To date, sialic acid-containing lipids and polymers have been studied as entry blockers (Matsubara et al, 2010). In 

particular, many types of sialic acid-containing polymers  have been developed on the basis of a cristallographyc HA 

structures, including sialic acid-conjugated dendritic polymers, sialyloligosaccharides containing poly L-glutamic 



acid backbones, and sialyllactose-carrying polystyrene (Gambaryan et al., 2005; Tanaka et al., 2014). Unfortunately 

they suffer from subtype-dependent antiviral activity and a low barrier for resistance selection (Tang et al., 2016). 

Taking into account these attempts, it is important the development of universal antagonists, which are able to bind 

into the sialic binding site with high affinity so that single protein mutations should not be able to escape their 

inhibition. In this context, the detailed analysis of the binding features of syalic derivatives is very important and in 

this paper a new procedure to perform the interaction studies will be proposed. 

The HA receptor glycans display a different glycosidic linkage between sialic acid -(Neu5Ac: N-acetyl neuraminic 

acid) and the penultimate sugar of the chain. Among these, influenza viruses recognize Neu5Ac(α2-3) or Neu5Ac 

(α2-6) linked to galactose (Gal) or N-acetyl galactosamine (GalNAc), (α2-6) linked to N-acetyl glucosamine 

(GlcNAc) containing oligosaccharides (Layne et al, 2009, Paulson et al., 2006). Until now, the general paradigm for 

the species selectivity of avian-and human-virus infection is that human-flu viruses preferentially bind to sialyl(α2-

6)-linked disaccharides that is predominant in the upper human respiratory tracts, whereas avian flu viruses bind to 

sialyl(α2-3)-linked disaccharide moieties of the host receptor binding sites, which predominates in the avian enteric 

tract (Paulson et al., 2006; Viswanathan et al., 2010) (Figure 1). The paradigm of classifying viruses as only 

sialyl(α2-3) or (α2-6) linkage types is not sufficient to explain the infection and transmission of various strains of 

avian and mammalian influenza viruses. In fact, in the case of H5N1, H7N9, and other mutated flu viruses, 

classification based on linkage specificity does not correlate with the tendencies of human infection and intra- and 

inter-species transmissions of flu viruses. For example, highly pathogenic H5N1 viruses show strong sialyl(α2-6)-

binding properties and weak sialyl(α2-3)-binding properties, but they have shown inefficient human infection and 

human-to-human transmission (Haselhorst et al, 2008; Chandrasekaran et al, 2008). 

To date, most efforts to study viral membrane proteins (HA and NA) have utilized solubilized versions of 

recombinant proteins (Elli et al., 2014), and there are concerns that the recombinant protein structure may not 

accurately reflect the native structure due to the absence of transmembrane domains or membrane components 

(Stevens et al, 2006b). Virus Like Particles (VLP) expressing HA have been used to overcome this problem 

(Haselhorst et al, 2008). VLP present the possibility to study the biochemical and biophysical properties of viral 

membrane proteins in their native environment, but they can contain significant amounts of serum proteins, which 



exhibit high potential for non-specific interactions, thereby complicating NMR studies of ligand-target interactions 

(Antanasijevic et al, 2016).  

In this paper we describe a new model system where HAs is expressed on the surface of stably transfected human 

HEK-293T cells. The expression of HAs at high density on the cell surface was confirmed by Fluorescence-

activated cell sorting (FACS) with anti-HA antibodies. The proteins were shown to be recognized by monoclonal 

antibodies specific for the native trimeric conformation and to maintain their  binding properties. The interaction of 

HA expressing HEK-293T cells with the Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc HA receptor  is demonstrated here 

for the first time, using STD-NMR experiments.  

We chose Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc trisaccharide (1) (Figure 1A) as target molecule to investigate the 

binding. The complex was analyzed by Saturation Transfer Difference (STD) NMR (Meyer and Peters, 2003), 

which is an ideal tool to map the epitope and to describe the target-ligand interactions (Vasile et al, 2014; 

Heggelund et al, 2012; Haselhorst et al, 2008). We have already shown that the interactions between small ligands 

and membrane-bound proteins can be observed by STD NMR and trNOESY techniques directly in suspensions of 

living cells (Potenza et al, 2011; Guzzetti et al, 2013 and 2017) or platelets (Potenza et al, 2008) without the need of 

isolating the protein receptor. These experimental conditions are particularly valuable in the case of membrane 

proteins, because the structural and thermodynamic features of purified proteins can differ  significantly from those 

attained in vivo.  

Figure 1.  

Results  

Characterization of H1- and H5-293T cell lines. 

Stable H1- and H5-transfectants of HEK-293T cells were constructed as detailed in the Methods. After transfection, 

HA-positive cells were sorted by FACS (Figure 2A.) The presence of HA DNA in the transfectants was monitored 

by PCR (Figure 2B). The proteins are exported to the cell surface as demonstrated by flow cytometry, which shows 

that more than 85% of the cells are HA-positive (Figure 2C). Western blot analysis of whole cell lysates in reducing 

and non-reducing conditions shows that the proteins are synthetized as monomers and then aggregated into dimers 



and trimers (Figure 2D). Immuno-precipitation with CR6261 of membrane proteins solubilized by Triton X-100 

extraction, followed by western blot analysis in non-reducing conditions, demonstrates that the surface proteins are 

correctly conformed as trimers and then dissociated into dimers and monomers during the electrophoresis (Figure 

2E). Furthermore, the HA molecules are shown to be able to bind sialic acid, because they agglutinate chicken red 

cells forming rosettes (Figure 2F). We repeated hemagglutination test on cells in buffer and we confirmed that HAs 

maintain their conformation after 15h (which are the NMR condition and experiments time), 

 Figure 2.  

Conformational analysis of the ligand 

The glycan conformation and topology is important in governing the receptor specificity of the human and avian  

hemagglutinin subtypes H1 and H5. The NMR spectra of 1 were measured in deuterated buffer solution and the 

assignment of compound is reported in Table I.  

The analysis of the conformational features of compound 1 at 298K has been made difficult by the absence of inter-

residual NOEs, due to high mobility of this small saccharide. At 283K,  the NOESY spectrum, recorded with 700 ms 

mixing time, shows one weak inter-residual NOE between H5 Neu5Ac and CH3CO GlcNAc corresponding to an 

estimated distance of 4-5 Å (Figure 1B). So we performed a molecular dynamic simulation and energy  

minimization with Gromacs.  Analyzing the resulting structures we observed that the molecule assume different 

conformations (Figure 1C): about 15% among these are satisfying the NMR constraint, indicating a bent 

conformation (Figure 1B).  

This kind of conformation (Figure 1B) is termed as “umbrella” in the literature and was reported for several 

derivatives with α(2-6) linkage at the nonreducing end, with different lengths and different second glicosidic 

linkages (Sassaki et al, 2013). This conformation is also reported (Chandrasekaran et al, 2008) for a tetrasaccharide 

cocrystallized with a human HA subtype, in which the mobility of the backbone of the ligand allows it to explore 

conformations similar to an umbrella progressing from a fully open form to a fully closed form. 

The tr-NOESY experiment (data not shown) in presence of transfected cells has few and weak NOE cross peaks 

similar to that observed in the NOESY experiment of the free ligand. The absence of inter-residual NOEs does not 



allow us to identify a preferred bound conformation and not even a significant conformational change upon binding 

to the protein. 

NMR Interaction studies 

Making use of STD-NMR technique, we analyzed the interaction of 6’-α-sialyl-N-acetyllactosamine (1) with three 

different cell lines: H1-293T and H5-293T, stably transfected with human (H1) and aviary (H5) hemagglutinin 

genes, respectively, and untransfected 293T cells as a negative control (Figure 3). The use of STD technique permits 

to obtain  evidence of binding and information about the protons involved in the epitope. 

No binding evidence was obtained in the experiment with control cell line (untransfected 293T), while,on the 

contrary, clear STD signals are shown for the trisaccharide in the presence of both HA-expressing cell lines (Figure 

3). The absence of signal in control experiments suggests that we are observing a specific binding of the ligand to 

HAs.The spectra also show that the binding epitopes of the saccharide differ in presence of the two HAs.  

Figure 3.  

For a better comparison of the epitope of the molecule 1 with different HA subtypes, atoms interacting with H1-

293T cells are labelled with red dots in Figure 4A, while those involved in the interaction with H5-293T cells are 

marked with blue dots in Figure 4B. Absolute STD % (Meyer and Peters, 2003) were quantified and reported in 

Figure 4C-D. 

Figure 4.  

The analysis of the ligand in presence of cells expressing H1 suggests that the epitope (Figure 4A) comprises the 

acetyl group and H7 of the Neu5Ac mojety, the anomeric and H2 protons of Gal and only the acetyl group of 

GlcNAc. All the saccharides have protons interacting with the protein, but it is a quite shallow interaction with low 

values of absolute STD percentage (ranging from 0.36% for H2 Gal and H7 NeuAc, to 0.68% for Acetyl groups, 

Figure 4C). This epitope is compatible with the interactions suggested in the literature for similar compounds (i.e. 

PDB structure 2WRG, Liu et al, 2009) and H1 hemagglutinin. 

The same ligand in presence of cells expressing H5 exhibits a different epitope. Several peaks of  Neu5Ac mojety 

can be detected in STD experiment (Figure 3 and 4B), such as the acetyl group, and the H3, H5, H6, H7 and H8 



protons, suggesting that it is more strongly involved in the interaction with the target HA-H5. Also the GlcNAc 

interaction is more effective involving the acetyl group, the anomeric and H2 protons. Also in this case, H1 and H2 

protons of Gal residue contribute to epitope. In this case the number of protons involved in the epitope and the 

absolute STD percentage (Figure 4D) of signals (ranging from 1.6% for H2 Gal and H7 NeuAc, to 2.8% for Acetyl 

groups) suggest a stronger interaction of the ligand with a particular involvement of the sialyl group. 

A strong interaction of Acetyl groups and a weak involvment of the Galactose residue are common point with both 

cell lines. These results recapitulate the known features of the sialyl(α2-6) derivatives. In particular, the binding 

mode observed by X-ray in presence of H1 (Liu et al, 2009) and the strongest affinity of short α2-6 saccharides for 

H5 subtype  (Chandrasekaran et al., 2008). Our data also confirm that: i) hemagglutinin is expressed in its 

native/active conformation on the HEK cell membrane and ii) that these cells are good tools for rapid screening and 

structural optimization of HA antagonists. 

Discussion 

The rapid genomic variability of the influenza virus requires a continuous effort in the development of anti-viral 

molecules, to circumvent the emergence of resistant strains. A key tool for the rational design of such anti-viral 

leads is STD-NMR, which can map the interactions of the epitope as a function of variation of the target molecule at 

atomic scale. In this paper, we developed a rapid and reliable new method for screening sialic acid-related 

hemagglutinin ligands in an environment which is much more similar to that in vivo than using the purified protein 

or the popular VLP.  

We tested the method to analyze the interaction of sialyl trisaccharide 1 with 293T cells transfected with H1 and H5 

subtypes of hemagglutinin, responsible for human and bird flu respectively. The key feature provided by this 

method is that HA molecules transfected on HEK-293T cells membrane retain their native conformations (as 

evidenced by the reactivity with monoclonal antibodies specific for conformational stem epitopes) and  their binding 

properties (evidenced by the rosettes formed with chicken erythrocytes). With this approach, we are able to detect 

the binding event and the epitope, both valuable informations for drug design and we suggest that this could be a 

suitable effective method to screen other ligands which might act as antagonists of possible pharmacological 

relevance. Three different cell lines (untransfected 293T, H1-293T and H5-293T), suspended in phosphate buffer, 



were tested to produce control STD-NMR spectra, suggesting that no subtraction is necessary. This is a remarkable 

improvement over the use of VLPs, which produced noise signals from nonbinding ligands (i.e. unavoidable 

medium components) (Haselhorst et al, 2008). The absence of cells residual effect makes the STD signals clearer 

and easily detectable.  

Making use of STD-NMR spectra of Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc in presence of human H1 and avian H5 

we could rationalize at atomic level the different binding properties to the two strains. Currently, avian H5N1 

viruses have high α2-3 glycan specificity but some strains  also show mixed α2-3 /α2-6 binding (Yamada et al., 

2006 ), but have not yet transmitted between humans at epidemic levels. Recent studies based on analysis of HA–

glycan cocrystal structures (Bewley, 2008; Chandrasekaran et al, 2008) have highlighted the importance of glycan 

conformation and topology in governing the receptor specificity of avian- and human-adapted HAs. Our results 

suggested that α2-6 human receptor is able to bind avian H5 with a wider epitope  relative to human H1. In fact, in 

presence of H5, the Neu5Ac residue at the nonreducing end is strongly involved in the interaction. These data are in 

agreement with the observation, reported by Chandrasekaran et al., that also avian viruses are able to bind α2-6 

saccharides, since they conclude that human adapted viruses (H1)  may be able to bind long (α2-6) derivatives 

preferentially while avian viruses (H5) bind (α2-3) and short (α2-6) saccharides. 

We think that further applications of this studies can bring to a better understanding of HAs – glycans binding 

features and can be useful for the design of new anti-influenza drugs.  

Materials and Methods 

Compound Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc was purchased by Carbosynth Ltd, Berkshire (UK).  

Construction of stable hemagglutinin-expressing transfectant cell lines 

Constructs pcDNA3.1-H1 and pcDNA3.1-H5 plasmids, carrying the hemagglutinin genes from influenza viruses 

A/California/7/2009_H1N1 and A/Cygnus olor/Italy/724/2005_H5N1, were obtained by subcloning the genes (Di 

Lullo et al., 2009) into the MCS of the commercial plasmid pcDNA3.1(+) (Invitrogen), in which gene expression is 

dierected by the CMV promoter. The human cell line HEK-293T (ATCC CRL-3216) was transfected with plasmid 



DNA (10 µg/ml. Transfectants were selected in G418-containing medium and passaged 3 times in the same 

medium. HA-transfectants show unaffected growth rate and mortality as compared to untransfected HEK-293T. 

Cells expressing HA on the cell surface were sorted (by FACS) with anti-HA stem monoclonal antibody CR6261 

(Friesen et al., 2010) (Acrobiosystems, USA), specific for the native conformation, and expanded as the stable 

transfectant cell lines H1-293T and H5-293T. PCR (with serotype-specific primers), Western blot (in reducing 

conditions, with chicken anti-HA antisera), flow cytometry (with CR6261), immuno-precipitation with CR6261 

(followed by western blot analysis in non-reducing conditions) were carried out by standard methods. For the 

hemagglutination rosette assay with chicken erythrocytes (ChRBC), H1-293T, H5-293T, or untransfected 293T cells 

were mixed with ChRBC, spun into a pellet, resuspended and spun through a Histopaque cushion (293T cells float 

on Histopaque-1.077 (Sigma-Aldrich), while ChRBC form a pellet).  HA-dependent 293T rosettes were recovered 

from the red pellet. 

NMR experiments 

All NMR spectra were registered on Bruker Avance 600 MHz using 7–9 mM solutions of the ligand in deuterated 

phosphate buffer (pH 7.4). The assignment was performed through one- and two-dimensional 1H and 13C NMR 

spectra by standard manual method (Wuthrich, 1986; Vasile et al, 2008). The complete assignment of the molecule 

is reported in Table I. The proton resonances did not show significant shifts when the compound was analyzed in the 

presence of the cells suspension. For the conformational analysis, we recorded NOESY with 700 ms and tr-NOESY 

with 200 ms mixing time. 1H and NOESY experiments were performed using an excitation sculpting sequence for 

solvent suppression. The STD–NMR spectra were acquired in the presence of about 10x106 T293 untransfected and 

transfected cells in a total volume of 200 mL, using the Watergate sequence for water suppression and varying the 

saturation times from 0.98 to 2.94 s. The on-resonance irradiation of the protein was performed at a chemical shift of 

-0.05 ppm. Off-resonance irradiation was applied at 200 ppm, where no protein signals were visible. Negative 

controls were performed to avoid the presence of signals in the blank or artifacts. STD spectra of the free ligands 

and of the cells in absence of ligand did not show any signals. Velocity of sedimentation of the cells in the NMR 

tube was not studied but the cells are maintained in suspension thanks to the rotation into the NMR probe(the spin 

rate is 20 revolutions/second = 20 Hz).  



NMR experiments were acquired at 298 K and repeated at 283K on free ligand in order to reduce the mobility and to 

observe NOEs useful for conformational analysis. At 298 K, due to the high mobility of this small saccharide,  we 

detected only an intra-residual NOE (NeuAc H3eq/H3ax), at 283K instead we detected several intra-residual NOEs 

(NeuAc H3eq/H3ax, NeuAc H3eq/H4, NeuAc H5/H3ax, Gal H1/H3) and one inter-residual NOE (NeuAc H5/ 

GlcNAc COCH3) and we used it for the conformational analysis. 

STD experiments were performed at 298K and also in this case they were repeated at 283K as attempt to slow down 

the magnetization exchange and to obtain an enhancement of the signals.  The STD experiments discussed herein 

were conducted at 298 K with a total irradiation time of 2.94 s.  

Conformational analysis 

The molecular dynamic simulations are performed with Gromacs 4.6.5 (Hess et al, 2008). The interactions of the 

molecule are modelled with the GAFF force field (Wang et al, 2004, Vasile et al, 2017) in explicit water. After 

energy minimization and water thermalisation, we performed 50ns of simulation at 300K, recording 1000 

conformations to be analyzed. 
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Figure 1. Structure of Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc  1 (A). Representative structure of the bent 

conformation in which the distance between NeuAc H5/ GlcNAc COCH3 is lower than 0.5 nm, compatible with the 

presence of the NOE (the population of this family of structure is estimated around 15%)  (B). Representative 

structure of a more extended conformation (C).   

Figure 2. (A) Fluorescence-Activated Cell Sorting with Mab CR6261 of H1- and H5-transfectants of HEre collected 

from “R4” sorting windows. (B) PCR analyis of HA DNA from H1-293T and H5-293T cell lines; subtype-specific 

primers reveal a short internal fragment of the H1 gene and a full-length fragment of the H5 gene. Positive and 

negative controls (C+ an C-) are the donor plasmids and untransfected 293T cells, respectively. (C) Flow cytometry 

analysis, with Mab CR6261, shows that more than 85% of the cells are HA-positive in both cell lines. (D) Western 

blot analysis of whole cell lysates, in reducing (+DTT) and non-reducing (-DTT) conditions, shows that the proteins 

are synthetised as monomers and aggregated into dimers and trimers. (E) Immuno-precipitation with CR6261 of 

membrane proteins solubilized by Triton X-100 extraction, followed by western blot analysis in non-reducing 

conditions. (F) H5-293T cells (and H1-293T cells, not shown) agglutinate chicken red cells forming rosettes. 

Figure 3. A) 1H-NMR of 6’-α-sialyl-N-acetyllactosamine in deuterated phosphate buffer pH=7.4 (T=298K).  B and 

C) STD-NMR experiments of 6’-α-sialyl-N-acetyllactosamine  in presence of H5-293T and H1-293T cells 

respectively. D) STD-NMR experiments of 6’-α-sialyl-N-acetyllactosamine  in presence of untransfected cells. 

NMR experiments were performed using a Bruker 600 MHz spectrometer, STD spectra were obtained with - 0.05 

ppm as irradiation frequency and 2.94 s of saturation time.  

Figure 4. The protons belonging to the epitope of compound 1 in the presence of H1-293T  cells are marked with 

dots (A) and the absolute STD percentage for each protons is reported  (C). The same compound analyzed in 

presence of H5-293T  shows a stronger affinity: the epitope comprises several protons (B) with a higher intensity of 

absolute STD % (D). 



 

 



Table I. NMR assignment of Neu5Ac-α-(2,6)-Gal-β-(1-4)-GlcNAc in deuterated phosphate buffer (pH=7.4). 

 
NeuAc 

 1H (ppm)* 13C (ppm) 
3  2.58 (eq), 1.63 (ax) 39.4 
4 3.56 67.5 
5 3.74 54.9 
6 3.62 71.6 
7 3.48 67.6 
8 3.89 69.0 
9 3.79, 3.56 61.9 

CH3 1.94 21.8 
Gal 1 4.36 102.6 

2 3.46 70.0 
3 3.6 71.8 
4 3.84 67.9 
5 3.74 72.9 
6 3.91, 3.46 62.8 

GlcNAc (α) 1 5.12 89.7 
2 3.85 52.6 
3 3.81 70.9 
4 3.58 80.2 
5 3.54 73.9 
6 3.79 59.3 

CH3 1.98 22.0 
GlcNAc (β) 1 4.66 94.0 

2 3.64 55.3 
3 3.81 70.9 
4 3.58 80.2 
5 3.54 73.9 
6 3.83, 3.73 59.6 

CH3 1.98 22.0 
* The spectrum is referenced through the solvent lock (2H) signal according to IUPAC recommended secondary 
referencing method. 


