700 research outputs found

    Structural Transitions and Global Minima of Sodium Chloride Clusters

    Full text link
    In recent experiments on sodium chloride clusters structural transitions between nanocrystals with different cuboidal shapes were detected. Here we determine reaction pathways between the low energy isomers of one of these clusters, (NaCl)35Cl-. The key process in these structural transitions is a highly cooperative rearrangement in which two parts of the nanocrystal slip past one another on a {110} plane in a direction. In this way the nanocrystals can plastically deform, in contrast to the brittle behaviour of bulk sodium chloride crystals at the same temperatures; the nanocrystals have mechanical properties which are a unique feature of their finite size. We also report and compare the global potential energy minima for (NaCl)NCl- using two empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte

    Why do some young cool stars show spot modulation while others do not?

    Full text link
    We present far-red, intermediate resolution spectroscopy of 572 photometrically selected, low-mass stars (0.2<M/M_sun<0.7) in the young open cluster NGC 2516, using the FLAMES spectrograph at the Very Large Telescope. Precise radial velocities confirm membership for 210 stars that have published rotation periods from spot-modulated light curves and for another 144 stars in which periodic modulation could not be found. The two sub-samples are compared and no significant differences are found between their positions in colour-magnitude diagrams, the distribution of their projected equatorial velocities or their levels of chromospheric activity. We rule out differing observational sensitivity as an explanation and conclude that otherwise similar objects, with equally high levels of chromospheric activity, do not exhibit spot-induced light curve modulation because their significant spot coverage is highly axisymmetric. We propose that the spot coverage consists of large numbers of small, dark spots with diameters of about 2 degrees. This explains why about half of cluster members do not exhibit rotationally modulated light curves and why the light curve amplitudes of those that do have mean values of only 0.01-0.02 mag.Comment: Accepted for publication in MNRAS, 11 pages. Electronic tables available from the author

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 ÎŒg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 ÎŒg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    Ephrin–Eph signaling as a potential therapeutic target for the treatment of myocardial infarction

    Get PDF
    Although numerous strategies have been developed to reduce the initial ischemic insult and cellular injury that occurs during myocardial infarction (MI), few have progressed into the clinical arena. The epidemiologic and economic impact of MI necessitates the development of innovative therapies to rapidly and effectively reduce the initial injury and subsequent cardiac dysfunction. The Eph receptors and their cognate ligands, the ephrins, are the largest family of receptor tyrosine kinases, and their signaling has been shown to play a diverse role in various cellular processes. The recent advances in the study of ephrin– Eph signaling have shown promising progress in many fields of medicine. They have been implicated in the pathophysiology of various cancers and in the regulation of inflammation and apoptosis. Recent studies have shown that manipulation of ephrin–Eph cell signaling can favorably influence cardiomyocyte viability and ultimately preserve cardiac function post-MI. In this article, we explore the hypothesis that manipulation of ephrin–Eph signaling may potentially be a novel therapeutic target in the treatment of MI through alteration of the cellular processes that govern injury and wound healing

    Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment

    Get PDF
    Gold nanohexapods represent a novel class of optically tunable nanostructures consisting of an octahedral core and six arms grown on its vertices. By controlling the length of the arms, their localized surface plasmon resonance peaks could be tuned from the visible to the near-infrared region for deep penetration of light into soft tissues. Herein we compare the in vitro and in vivo capabilities of Au nanohexapods as photothermal transducers for theranostic applications by benchmarking against those of Au nanorods and nanocages. While all these Au nanostructures could absorb and convert near-infrared light into heat, Au nanohexapods exhibited the highest cellular uptake and the lowest cytotoxicity in vitro for both the as-prepared and PEGylated nanostructures. In vivo pharmacokinetic studies showed that the PEGylated Au nanohexapods had significant blood circulation and tumor accumulation in a mouse breast cancer model. Following photothermal treatment, substantial heat was produced in situ and the tumor metabolism was greatly reduced for all these Au nanostructures, as determined with ^(18)F-flourodeoxyglucose positron emission tomography/computed tomography (^(18)F-FDG PET/CT). Combined together, we can conclude that Au nanohexapods are promising candidates for cancer theranostics in terms of both photothermal destruction and contrast-enhanced diagnosis

    Longitudinal analysis of low-molecular weight fluorophores in type 1 diabetes mellitus

    Get PDF
    Objectives : Circulating low molecular weight (<10 kDa) fluorophores (LMW-F) measured by non-specific fluorescence spectroscopy may detect small advanced glycation end-products (AGEs) not recognized by other assays. This longitudinal study assessed correlates of LMW-F and predictive power of LMW-F levels for vascular health in Type 1 diabetes (T1DM) patients. Methods : Fasting patients with T1DM (n=37) were studied twice at intervals of 12-60 months (mean±SD, 33±15 months). LMW-F levels were also measured once in 112 healthy control subjects. Results : Relative to controls, LMW-F levels were higher in diabetic subjects at initial and final time points (mean±SD), 5.4±1.9 AU/ml and 4.5±1.8 AU/ml respectively vs. 3.8±2.1 AU/ml p=0.0001 and p=0.06). Baseline LMW-F levels predicted subsequent hs-CRP and oxLDL/LDL values. LMW-F levels decreased significantly over time in diabetes (5.4±1.9 vs. 4.5±1.8 AU/ml p=0.02). Rises in LMW-F levels in individual diabetic subjects correlated significantly with worsening renal function (BUN), glycemia (HbA1c) and with vascular dysfunction (systemic vascular resistance). Conclusions : LMW-F levels predict levels of inflammation and oxidation in T1DM. Changes in LMW-F levels in T1DM reflect variations in glycemia and renal function. Biochemical characterization of LMW-F would facilitate understanding of the potential utility of LMW-F as a therapeutic target

    Vaccination with the Crimean-Congo hemorrhagic fever virus viral replicon vaccine induces NP-based T-cell activation and antibodies possessing Fc-mediated effector functions

    Get PDF
    Crimean-Congo hemorrhagic fever virus (CCHFV; family Nairoviridae) is a tick-borne pathogen that frequently causes lethal disease in humans. CCHFV has a wide geographic distribution, and cases have been reported in Africa, Asia, the Middle East, and Europe. Availability of a safe and efficacious vaccine is critical for restricting outbreaks and preventing disease in endemic countries. We previously developed a virus-like replicon particle (VRP) vaccine that provides complete protection against homologous and heterologous lethal CCHFV challenge in mice after a single dose. However, the immune responses induced by this vaccine are not well characterized, and correlates of protection remain unknown. Here we comprehensively characterized the kinetics of cell-mediated and humoral immune responses in VRP-vaccinated mice, and demonstrate that they predominantly target the nucleoprotein (NP). NP antibodies are not associated with protection through neutralizing activity, but VRP vaccination results in NP antibodies possessing Fc-mediated antibody effector functions, such as complement activation (ADCD) and antibody-mediated cellular phagocytosis (ADCP). This suggests that Fc-mediated effector functions may contribute to this vaccine’s efficacy

    Spin–lattice and electron–phonon coupling in 3d/5d hybrid Sr3NiIrO6

    Get PDF
    Research at the University of Tennessee, Rutgers University, and University of Minnesota is supported by the National Science Foundation DMREF program (DMR-1629079, DMR-1629059, and DMR-1629260, respectively). The crystal growth was partially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2016K1A4A4A01922028). We also appreciate funding from the U.S. Department of Energy, Basic Energy Sciences, contract DE-FG02-01ER45885 (Tennessee), “Science at 100 Tesla” (LANL), and “Topological phases of quantum matter and decoherence” (LANL). The NHMFL facility is supported by the U.S. National Science Foundation through Cooperative Grant DMR-1644779, the State of Florida, and the U.S. Department of Energy.While 3d-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5d systems are recognized for strong spin–orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr3NiIrO6, for example, displays complex magnetism and ultra-high coercive fields—up to an incredible 55 T. Here, we combine infrared and optical spectroscopies with high-field magnetization and first-principles calculations to explore the fundamental excitations of the lattice and related coupling processes including spin–lattice and electron–phonon mechanisms. Magneto-infrared spectroscopy reveals spin–lattice coupling of three phonons that modulate the Ir environment to reduce the energy required to modify the spin arrangement. While these modes primarily affect exchange within the chains, analysis also uncovers important inter-chain motion. This provides a mechanism by which inter-chain interactions can occur in the developing model for ultra-high coercivity. At the same time, analysis of the on-site Ir4+ excitations reveals vibronic coupling and extremely large crystal field parameters that lead to a t2g-derived low-spin state for Ir. These findings highlight the spin–charge–lattice entanglement in Sr3NiIrO6 and suggest that similar interactions may take place in other 3d/5d hybrids.Publisher PDFPeer reviewe
    • 

    corecore