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Abstract

Background: Classification of COPD is usually based on the severity of airflow, which may not sensitively differentiate
subpopulations. Using a multiscale imaging-based cluster analysis (MICA), we aim to identify subpopulations for current
smokers with COPD.

Methods: Among the SPIROMICS subjects, we analyzed computed tomography images at total lung capacity (TLC)
and residual volume (RV) of 284 current smokers. Functional variables were derived from registration of TLC and RV
images, e.g. functional small airways disease (fSAD%). Structural variables were assessed at TLC images, e.g. emphysema
and airway wall thickness and diameter. We employed an unsupervised method for clustering.

Results: Four clusters were identified. Cluster 1 had relatively normal airway structures; Cluster 2 had an increase of
fSAD% and wall thickness; Cluster 3 exhibited a further increase of fSAD% but a decrease of wall thickness and airway
diameter; Cluster 4 had a significant increase of fSAD% and emphysema. Clinically, Cluster 1 showed normal FEV1/FVC
and low exacerbations. Cluster 4 showed relatively low FEV1/FVC and high exacerbations. While Cluster 2 and Cluster 3
showed similar exacerbations, Cluster 2 had the highest BMI among all clusters.

Conclusions: Association of imaging-based clusters with existing clinical metrics suggests the sensitivity of MICA in
differentiating subpopulations.
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Background
Chronic obstructive pulmonary disease (COPD) is cur-
rently the third leading cause of death in the United
States [1]. COPD is characterized by airflow limitation
that is incompletely reversible [2], and thus it is identi-
fied by the ratio of forced expiratory volume in 1 s over
forced vital capacity (FEV1/FVC) at post bronchodilator.
The severity is further distinguished by FEV1% predicted
values by COPD guidelines [3]. The ratio of FEV1/FVC
is used as an indicator to identify COPD patients in
diagnosis of the disease [3], but it may not be sensitive
enough to differentiate heterogeneous alterations charac-
terized by multiple pathologies [4]. In contrast, quantita-
tive computed tomography (QCT) can distinguish
emphysema-predominant and airway-predominant dis-
eases [5] and help link structural and functional vari-
ables [6, 7]. Individual imaging-based metrics have been
derived from both CT and MRI studies of the lungs in
both COPD and asthma [8]. With recent advances in
unsupervised clustering of subject populations [9–11],
there is an increased effort to employ these methods for
grouping sub-populations of subjects within both the
asthma [12] and COPD communities [13–17].
With the introduction of novel structural and functional

imaging-based metrics [6] and corrections for inter-site and
inter-subject variabilities [18], Choi et al. [7] recently inte-
grated all of the imaging-based metrics measured at
multi-scales to derive imaging-based clusters of subjects
from an asthma population. These clusters were signifi-
cantly associated with clinical characteristics. In the present
work, we utilize the same approach, but with an expanded

set of variables that include an image matching-based
quantification of emphysema and functional small airways
disease to derive imaging-based clusters in a COPD popula-
tion with meaningful associations to clinical characteristics.
For this purpose we investigated a subject population from
within the Subpopulations and Intermediate Outcome
Measures in COPD Study (SPIROMICS) [19] which was
initiated to provide robust criteria for sub-classifying COPD
participants and further identify biomarkers and pheno-
types for efficient conduct of treatment trials.

Methods
Human data and QCT imaging
From the first 1000 subjects recruited into SPIROMICS
[19] we performed image matching and identified 700
subjects in whom total lung capacity (TLC) to residual
volume (RV) matches were successful. From these sub-
jects with matching data we chose to study current
smokers falling within strata 2–4 [19] (N = 284) as well as
healthy non-smokers (N = 130). SPIROMICS categorized
subjects into four strata 1–4. The healthy non-smokers
(stratum 1) were defined as FEV1/FVC > 0.7 with smoking
status (pack-year) < 1. Smokers with (pack-year) > 20 and
FEV1/FVC > 0.7 were grouped in stratum 2. Also smokers
in strata 3 and 4 had FEV1/FVC < 0.7; those with FEV1 >
50% were grouped in stratum 3 whereas those with FEV1
< 50% were in stratum 4 [19]. The demographics of these
populations are summarized in Table 1. The current
smokers were employed to derive imaging-based COPD
clusters and individual metrics were compared with the
non-smoking healthy controls. We initially performed

Table 1 Demography, baseline (Pre-bronchodilator) and maximal (Post-bronchodilator) pulmonary function tests for 130 Stratum 1
(healthy), 114 Stratum 2, 131 Stratum 3 and 39 Stratum 4 subjects

Stratum 1 (Healthy) Stratum 2 Stratum 3 Stratum 4 P value

N = 130 N = 114 N = 131 N = 39

Demography

Age, yrs 47.8 (16.9) 53.7 (8.1) 62 (8.1) 62.6 (7.7) < 0.0001

BMI, kg/m2 27.4 (5.5) 28.4 (5.3) 26.3 (4.8) 23.8 (4.9) < 0.0001

Gender, (Male/Female %) 41.5/58.5 49.1/50.9 61.8/38.2 69.2/30.8 0.039

Race, Caucasian/ African American/ Other (%) 71.5/16.2/12.3 45.6/48.2/6.1 77.1/19.1/3.8 71.8/20.5/7.7 < 0.0001

Baseline lung functiona

FEV1% predicted 100 (13) 93 (14) 64 (18) 34 (7) < 0.0001

FVC % predicted 99 (11) 98 (14) 87 (19) 67 (16) < 0.0001

FEV1/FVC × 100 80 (7) 75 (6) 56 (8) 40 (11) < 0.0001

Maximal lung functionb

FEV1% predicted 102 (11) 99 (14) 73 (16) 40 (7) < 0.0001

FVC % predicted 99 (10) 100 (13) 96 (18) 78 (17) < 0.0001

FEV1/FVC × 100 82 (6) 78 (5) 58 (8) 41 (11) < 0.0001

Values expressed as mean (SD) or number (%). Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables. aBaseline
(Prebronchodilator) values with greater than six hours withhold of bronchodilators. bMaximal (Postbronchodilator) values after six to eight puffs of albuterol.
Maximal lung function for 25 healthy subjects were not available
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cluster analysis [20] including both former and current
smokers, which resulted in less statistically stable clusters
based on the Jaccard index [21] (90% and 70% for current
and both former and current smokers, respectively). This
suggested that smoking status introduced confounding
variables, interfering with many metrics such as the em-
physema index which is shifted by the effect of inflamma-
tion (associated with smoking status) on regional lung
density [22].

Multiscale imaging-based variables
Volumetric CT imaging was carried out during coached
breath holds at TLC and RV [23], and image analysis
was carried out with use of the Apollo software (VIDA
Diagnostics, Coralville, Iowa).
Sixty nine post-processed imaging-based variables were

employed at both segmental and lobar levels, which is an
expanded set of existing 57 variables used for asthma clus-
ter analysis [7] utilizing our multiscale imaging-based
clustering approach (MICA). The four structural variables
at the pre-segmental and segmental levels were extracted
from ten local regions to reflect the regional characteris-
tics [6]. These structural variables included bifurcation
angle (θ), airway circularity (Cr), wall thickness (WT) and
hydraulic diameter (Dh), where each variable indicated
alteration of airway geometry, alteration of luminal shape,
wall thickening and luminal narrowing, respectively. The
dimensions of WT and Dh were normalized by predicted
trachea WT and Dh from healthy controls denoted by
WT* and Dh* [6]. The normalization was used for elimin-
ating inter-subject variability due to sex age and height.
Employing a mass-preserving image registration tech-

nique [24, 25], lobar/global functional variables were further
derived to describe the alterations of lung deformation
between inspiration and expiration. The variables at lobar
levels included fractional air volume change (ΔVair

F), the

determinant of Jacobian matrix (Jacobian) [26] and aniso-
tropic deformation index (ADI) [26, 27], indicating regional
contribution of ventilation (lobar fraction of air volume
change between TLC and RV), regional volume change,
and the degree of preferential deformation, respect-
ively. In this study, we also employed three new vari-
ables; fraction-based small airways disease (fSAD%) to
characterize small airway, fraction-based emphysema
(Emph%) for emphysematous diseases as well as tissue frac-
tion at TLC (βtissue). Emph % and fSAD% were defined
based upon a variation of the image-matching-based para-
metric response map used by Galban et al. [28]. In our im-
plementation, Emph% (98.5% air-fraction as the threshold)
and fSAD% (90% air-fraction as the threshold) were used
instead of using the density threshold identifying voxels <
− 950 HU, to account for scanner variability [18]. βtissue

Fig. 1 A scree plot for determining the optimal number of
principal components

(a) (b) K-means clustering Hierarchical clustering 

Fig. 2 a Clustering membership of K-means clustering on 2-D projected coordinates; (b) Clustering membership of Hierarchical clustering on 2-D
projected coordinates
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Table 2 Major structural and functional imaging-based variables in four imaging-based clusters and heathy subjects

Variable Region Wilk’s
λ value

Cluster 1
(N = 96)

Cluster 2
(N = 45)

Cluster 3
(N = 88)

Cluster 4
(N = 55)

P value Healthy subjects
(N = 130)

fSAD% Total 0.28 4.6
(5.4)

8.4
(8.2)

12.3
(6.9)

34.9
(7.9)

< 0.0001 4.4
(5.2)

Jacobian Total 0.145 2.09
(0.266)

1.496
(0.218)

1.671
(0.168)

1.353
(0.136)

< 0.0001 2.082
(0.41)

βtissue Total 0.107 0.127
(0.02)

0.162
(0.031)

0.117
(0.017)

0.095
(0.019)

< 0.0001 0.119
(0.027)

WT* sRML 0.086 0.599
(0.036)

0.615
(0.047)

0.557
(0.035)

0.563
(0.043)

< 0.0001 0.588
(0.047)

ADI RUL 0.072 0.406
(0.078)

0.314
(0.101)

0.309
(0.079)

0.22
(0.074)

< 0.0001 0.35
(0.093)

Dh* sLLL 0.064 0.349
(0.034)

0.322
(0.048)

0.307
(0.036)

0.289
(0.04)

< 0.0005 0.339
(0.041)

Emph% Total 0.058 2.8
(3)

2.4
(3)

4.2
(4.5)

13.5
(8.7)

< 0.0001 2.8
(3.8)

ADI Total 0.054 0.467
(0.066)

0.332
(0.086)

0.378
(0.07)

0.269
(0.073)

< 0.0001 0.429
(0.101)

ΔVairF LLL 0.051 0.245
(0.031)

0.207
(0.062)

0.254
(0.041)

0.273
(0.045)

< 0.0001 0.263
(0.037)

Cr LMB 0.049 0.976
(0.009)

0.965
(0.016)

0.973
(0.012)

0.962
(0.015)

< 0.0001 0.977
(0.011)

Values expressed as mean (SD). The major imaging-based variables were selected by Wilk’s λ value of a stepwise forward variable selection method. Analysis of
variance (ANOVA) tests were performed to attain P values. WT and Dh were normalized with their predicted trachea values from healthy controls denoted by WT*
and Dh*. Full names of each variable or region were described in Abbreviations used

Fig. 3 a Percentage of emphysema (Emph%) for four clusters and the healthy control group (green). † P > 0.05 between clusters 1, 2, 3 and the
healthy group. P < 0.05 between Cluster 4 and other groups for all pairwise comparisons (b) Percentage of small airway disease (fSAD%) for four
clusters and the healthy control group (green). ‡ P < 0.05 for comparisons between four clusters 2, 3, 4 and the healthy group for all pairwise
comparison. P > 0.05 for between Cluster 1 and the healthy group
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indicates the portion of tissue volume in each voxel to as-
sess a possible alteration of local tissue. Also, related global
(whole lung) variables were included; fSAD% (Total) and
Emph% (Total), apical-basal distance over ventral-dorsal
distance at TLC (lung shape), the ratio of air-volume
changes in upper lobes to those in middle and lower lobes
between TLC and RV (U/(M + L)|v), Jacobian (Total)
and ADI (Total) [26]. Therefore, we obtained 32 local
structural as well as 30 lobar and 7 global variables,
giving 69 imaging-based variables. These comprehen-
sive imaging variables were then used for a cluster
analysis. Full names of each variable are described in
Abbreviations used section.

Clustering and statistical analysis
We compared three general clustering methods including
K-means, Hierarchical [29] and Gaussian finite mixture
model-based [30] fed by principal components [31, 32].
Three methods (Kaiser/Harris, Cattel Scree Test and Paral-
lel Analysis [33]) were performed to retain an optimal num-
ber of principal components (Fig. 1). Internal properties of
clusters (Connectivity, Dunn index and Silhouette indices)
were used in order to find the best clustering method. The
K-means clustering method showed more stability and an
optimal number of clusters fitted for the structure of the
imaging data (Additional file 1). The results of clustering

for K-means and hierarchical are shown in Fig. 2. K-means
clustering with could achieve more clear separation of the
cluster membership compared to hierarchical clustering.
Next, we performed association tests of imaging-based

clusters with demographic and clinical variables to investi-
gate the clinical relevance of current clusters. The data
analysis was performed by R software (version 3.1.1).
Kruskal-Wallis and chi-square tests were performed to
compare differences of continuous and categorical vari-
ables, respectively. P = 0.05 was taken as the significant
level in all tests. The validation of the cluster analysis was
assessed by dividing the data set into training and valid-
ation sets (see the Additional file 1).

Results
Four clusters and imaging-based characteristics
The K-means clustering method produced four unique
clusters, containing 96, 45, 88 and 55 subjects respectively
(Table 2). Figure 3 shows the percentages of emphysema
and small airway disease (Emph% and fSAD%) for the dif-
ferent clusters and the healthy group. Figure 4 summarizes
the imaging-based characteristics of the four clusters. The
major variables which best describe the four clusters were
selected with a stepwise forward variable selection tech-
nique using Wilk’s λ criterion [34]. Ten major variables
with higher Wilk’s λ values are presented to explain

Fig. 4 A summary of imaging and clinical variables for four clusters
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structural and functional alterations associated with each
cluster (Table 2). We then performed a decision tree ana-
lysis to construct a simple predictive model (Fig. 5). The
model comprising 7 discriminant variables achieved 89%
accuracy in classification. These variables were Jacobian
(Total), Dh* (sLLL), Dh* (sRLL), WT* (sRUL), WT*
(sRML), βtissue (LLL) and fSAD% (Total).

Associations with demography and PFT
Association of clusters with demography and PFTs are
tabulated in Table 3. Cluster 1 with normal airway struc-
tures was mostly populated by GOLD 0 and stratum 2
subjects who were relatively younger and presented with a
lower BODE index compared to other clusters (P < 0.05).
Unlike Cluster 1, Cluster 4 was mostly populated by
GOLD 2, 3, 4 and strata 3, 4, respectively with relatively
older subjects. Cluster 1 included most subjects from
group A and B from ABCD assessment while subjects in
Cluster 4 shifted towards group D. Cluster 2 was associ-
ated with relatively higher BMI subjects. Also Cluster 3
was associated with subjects who exhibited a relatively
low BODE index. Cluster 4 subjects showed higher BODE
index and were relatively older males.

Both pre-bronchodilator and post-bronchodilation
PFT-derived lung function values are tabulated in Table 3.
FEV1/FVC showed a consistent, decreasing pattern from
Cluster 1 to Cluster 4. Subjects in Cluster 4 demonstrated
significant decreases in FEV1/FVC both pre-and post-
bronchodilation, while Cluster 1 showed a mean FEV1/
FVC of 0.74 that is above the normal cut off value of 0.7.
A similar decreasing pattern from Cluster 1 to Cluster 4
was found for FEV1 and FVC % predicted values, with the
highest and lowest values associated with Cluster 1 and
Cluster 4, respectively.

Associations with symptoms and disease histories
Symptoms and disease histories were collected from the
SPIROMICS [19, 23] data set and are summarized in
Table 4. Cluster 4 showed a higher history of chronic
bronchitis, emphysema, wheezing and whistling compared
to Clusters 1, 2, and 3. The prevalence of symptoms in
Clusters 1, 2 and 3 was less likely than Cluster 4. Cluster 2
showed an increased history of sleep apnea diagnosed at
baseline compared to other clusters. Cluster 4 had higher
smoking pack-years at baseline (P < 0.05) compared to the
other clusters.

Fig. 5 Predicting imaged-based cluster using only 7 important variables with a classification tree (“simple” imaging-based clustering). Variables are
Jacobian (Total), Dh* (sLLL), Dh* (sRLL), WT* (sRUL), WT* (sRML), βtissue (LLL) and fSAD% (Total) with 89% accuracy compared with “original”
imaging-based clusters using 69 variables
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CAT score, activity limitation and exacerbation histories
Blood biomarkers, baseline CAT score, exacerbation histor-
ies as well as activity limitation (6-min walk) are tabulated
in Table 5. While clusters did not show significant differ-
ence in blood biomarkers, there was a significant difference
for CAT score between clusters (P < 0.05). The CAT score
for all clusters were more than 10, suggesting respiratory
symptoms (symptomatic) in even the cluster 1 subjects, in
agreement with the findings of Woodruff et al. [35]. While
Clusters 1, 2 and 3 showed relatively similar CAT scores,
Cluster 4 showed a higher CAT score than other clusters.
Severe (since entering the study), total (since entering the
study), and total (at baseline) exacerbations showed signifi-
cant differences between clusters with Cluster 4 having the
most severe exacerbations. There was no significant differ-
ence in the number of exacerbations between Clusters 1, 2
and 3. Also subjects in Clusters 2 and 4 were more likely to
have activity limitations, as their 6-min walk distance and
oxygen desaturation were lower than other Clusters.

Cluster characteristics
Cluster 1: Relatively resistant smokers with preserved
pulmonary function
Cluster 1 had increased smoking pack-years (41.79 ±
22.05) with no or minimal airway obstruction (FEV1/FVC
= 0.74). Cluster 1 was mostly populated by GOLD stage 1
(66%) with low emphysema and low fSAD%. Cluster 1
showed that structural variables including WT*, Dh* and
Cr are very close to those of healthy controls. The CAT
score, BODE index and severe exacerbation history of this
cluster were relatively low compared to other clusters.
Cluster 1 can be considered to be relatively resistant
smokers with preserved pulmonary function.

Cluster 2: Airway-wall-thickening fSAD-dominant subjects
with obesity and activity limitation
Cluster 2 had increased smoking pack-years (42.89 ±
18.7) and a FEV1/FVC relatively close to the lower limit
of normal, 0.7. This cluster had the highest BMI among

Table 3 Demography, baseline (Pre-bronchodilator) and maximal (Post-bronchodilator) PFTs, in four imaging-based clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

N = 96 N = 45 N = 88 N = 55

Demography

GOLD stages (%) (0/1/2/3/4) 68/22/10/0/0 47/11/33/9/0 27/15/51/7/0 4/2/40/47/7 < 0.0001

ABCD assessment (%)
(A/B/C/D)

37/47/1/14 25/52/0/22 35/49/0/16 10/51/0/39 = 0.0005

Strata (%) (2/3/4) 68/32/0 51/40/9 27/66/7 4/44/52 < 0.0001

Gender (Female %) 44 49 44 31 0.26

Race
(White/Black/Others)

60/32/7 36/58/7 72/26/2 80/15/5 0.0001

Age (yrs.) 54.44
(8.01)

56.76
(8.51)

61.01
(8.24)

64.47
(8.14)

< 0.0001

BMI (kg/m2) 27.63
(4.7)

31.1
(5.04)

25.58
(4.76)

23.65
(4.26)

< 0.0001

BODE index 0.48
(0.9)

1.4
(1.9)

0.98
(1.1)

2.94
(1.7)

< 0.0001

Pre-bronchodilator valuesa

FEV1% predicted 0.91
(0.17)

0.73
(0.22)

0.68
(0.2)

0.42
(0.17)

< 0.0001

FVC % predicted 1.01
(0.15)

0.86
(0.17)

0.86
(0.18)

0.74
(0.16)

< 0.0001

FEV1/FVC 0.71
(0.09)

0.66
(0.14)

0.61
(0.1)

0.43
(0.11)

< 0.0001

Post-bronchodilator valuesb

FEV1% predicted 0.97
(0.16)

0.8
(0.2)

0.76
(0.18)

0.49
(0.17)

< 0.0001

FVC % predicted 1.04
(0.15)

0.92
(0.16)

0.93
(0.17)

0.85
(0.16)

< 0.0001

FEV1/FVC 0.74
(0.09)

0.68
(0.13)

0.63
(0.11)

0.44
(0.12)

< 0.0001

Data presented as number (%) or mean (SD). ANOVA and chi-square tests were performed for continuous and categorical variables, respectively. aPre-
bronchodilator values. bPost-bronchodilator values after six to eight puffs of albuterol. Full names of each variable were described in Abbreviations used. BODE
indexes for 8 subjects were not available
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all clusters and a higher BODE index than Clusters 1
and 3. Cluster 2 exhibited a decrease of Dh* and Cr com-
pared to Cluster 1 and had the highest WT* and βtissue
and the lowest Jacobian among all clusters. Cluster 2
also showed an increase of fSAD%, but with Emph%
close to that of Cluster 1. Cluster 2 showed no signifi-
cant difference in the number of exacerbations or CAT
score. Cluster 2 had decreased 6-min walk distance and
oxygen desaturation, similar to Cluster 4 but decreased
compared to Cluster 1, (P < 0.05). Thus, Cluster 2 can
be classified as thickened airway wall, narrowed airway
lumen and fSAD-dominant subjects with associated
obesity and activity limitations.

Cluster 3: Airway-wall-thinning fSAD-dominant subjects
Compared to Clusters 1 and 2, Cluster 3 with smoking
pack-years (47.06 ± 19.39, P > 0.05) showed a continued
increase of fSAD% (P < 0.05) with similar Emph%
(P > 0.05). Dh* showed significant decrease as compared
with Cluster 1, but not significant difference from that
of Cluster 2. Also WT* decreased compared to Clusters
1 and 2 (P < 0.05). FEV1/FVC (=0.63) for Cluster 3
remained close to the normal range with no significant
difference for the three categories of exacerbation (se-
vere, total and total at baseline) between Clusters 1, 2
and 3. Cluster 3 had 58% of subjects in GOLD stages

2–4 and had a CAT score close to Clusters 1 and 2.
While Cluster 3 did not show significant differences
in 6-min walk distance or oxygen desaturation com-
pared to Cluster 2, its oxygen desaturation decreased
comparable to that of Cluster 2 (P < 0.05). Cluster 3
can be categorized as fSAD-dominant subjects with
luminal narrowing and decreased wall thickness.

Cluster 4: Severe emphysema-fSAD-mixed subjects with
severe airway luminal narrowing and wall thinning
Cluster 4 had significantly greater smoking pack-years
(54.95 ± 21.03) compared to other clusters. It had a
higher CAT score along with more exacerbations and
greater activity limitations compared to the other clus-
ters. Cluster 4 also showed significant elevation of em-
physema and small airways disease (fSAD%↑↑ and
Emph%↑↑), significant decreases in lung deformation
(Jacobian↓↓ and ADI↓↓) and significant airway luminal
narrowing (Dh*↓↓, P < 0.05) compared to Clusters 1, 2,
and 3. Cluster 4 had significant decreases in airway wall
thickness (WT*↓↓, P < 0.05) compared to Clusters 1 and
2. Cluster 4 also had a much lower FEV1/FVC for both
baseline function and maximal post-bronchodilator lung
function compared to the other Clusters. Cluster 4 had a
higher BODE index compared to the other clusters.
Lymphocyte% decreased in Cluster 4 and reached near

Table 4 Associations with Symptoms and Disease Histories

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

N = 96 N = 45 N = 88 N = 55

Symptoms and disease History

History of pulmonary/vascular condition (%) 19 13 24 23 0.53

Smoking pack-years at baseline 41.79 (22.05) 42.89 (18.7) 47.06 (19.36) 54.95 (21.03) 0.0016

Chronic Bronchitis (%) 16 20 20 39 0.016

Emphysema (%) 17 20 25 55 < 0.0001

COPD diagnosed at baseline (%) 29 51 58 83 < 0.0001

Chronic bronchitis diagnosed at baseline (%) 21 33 28 41 0.079

Asthma (%) 20 36 22 21 0.19

Wheezing and whistling in chest (%) 60 62 66 89 0.002

Wheezing age (yrs.) (%) 60 86 84 92 0.0003

Sleep Apnea at baseline (%) 6 21 7 6 0.02

Shortness of breath during sleep (%) 18 29 14 29 0.06

Coronary artery disease 2 4 9 6 0.19

Diabetes (%) 6 18 9 9 0.2

Heart attack (%) 3 4 6 2 0.65

Congestive heart failure (%) 3 0 1 0 0.33

Genetic effect

Father had COPD (%) 19 13 23 22 0.61

Mother had COPD (%) 17 13 19 9 0.39
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statistical significance (P = 0.08). Therefore, Cluster 4 sub-
jects can be classified as severe mixed emphysema-fSAD
with severe luminal narrowing, decreased wall-thickness
and lung function.

Discussion
In the present study, we applied MICA [7], which utilized
an expanded set of 69 QCT imaging-based variables at
both segmental and global scales, to derive four statisti-
cally stable clusters in SPIROMICS current smokers with
unique structural and functional characteristics, and es-
tablish their associations with clinical metrics. Cluster 1
comprised relatively resistant smokers with preserved pul-
monary function (FEV1/FVC > 0.7) and respiratory symp-
tomatology (CAT> 10). Cluster 2 was characterized by
airway wall thickening, fSAD-dominance, obesity and ac-
tivity limitation. Cluster 3 exhibited airway wall thinning
(in agreement with the findings of Smith et al. [36] and
fSAD-dominance. Both Clusters 2 and 3 had FEV1/FVC

close to the lower limit of normal, 0.7. Cluster 4 had
mixed emphysema-fSAD with severe airway luminal nar-
rowing, wall thinning and decreased lung function.
To better understand the differences between

spirometry-based GOLD stages and imaging-based clus-
ters, Fig. 6 shows the distributions of GOLD 0–4 stages
and Clusters 1–4 of the current smokers on a parametric
response map (PRM) [28]. Except Cluster 2, Clusters 1,
3 and 4 appear to align with the path of the five GOLD
stages. Wan et al. [37] studied a cohort of GOPDGene
subjects with post-bronchodilator preserved ratio im-
paired spirometry (PRISm), characterized by a reduced
FEV1 (< 0.8) with a preserved FEV/FVC ratio (≥0.7).
They reported that PRISm subjects exhibit increased
BMI, reduced 6-min walk, increased segmental airway
wall area percentage, and increased respiratory symp-
toms [37], resembling both imaging and clinical charac-
teristics of our Cluster 2. Thus, although only ~ 3% of
the current smokers in this study met the spirometry

Table 5 Characteristics of biomarkers in four imaging-based clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

N = 92 N = 45 N = 87 N = 55

Blood/serum biomarkers

RBC distribution width (%) 14.25
(1.17)

14.04
(0.87)

13.63
(0.84)

14.13
(1.19)

0.0016

Total WBC count (N/μl) 7153.15
(2290.62)

7352.89
(2527.31)

7109.77
(1954.51)

7073.09
(2122.85)

0.924

Neutrophils% (%) 58.06
(9.52)

58.24
(11.78)

58.06
(9.65)

61.14
(10.22)

0.26

Lymphocyte% (%) 31.35
(8.09)

31.39
(10.45)

30.81
(8.58)

27.74
(9.53)

0.088

Monocyte% (%) 7.3
(2.5)

7.46
(2.12)

7.67
(2.18)

7.85
(2.2)

0.512

Eosinophils% (%) 2.63
(1.64)

2.29
(1.74)

2.72
(1.75)

2.61
(1.9)

0.6

Basophils% (%) 0.71
(0.61)

0.52
(0.36)

0.62
(0.54)

0.68
(0.64)

0.278

Baseline CAT scorea

13.17
(7.95)

16.45
(9.54)

13.78
(7.86)

20.06
(7.86)

< 0.0001

Exacerbations

Severeb 0.2
(0.6)

0.44
(1.62)

0.31
(0.82)

1.25
(2.27)

< 0.0001

Totalc 0.49
(1.19)

1.09
(3.39)

0.92
(2.14)

2.09
(2.91)

< 0.0001

Total at baselined 0.25
(0.68)

0.58
(1.39)

0.22
(0.63)

0.62
(0.99)

0.011

Activity limitation

6-min walk distance (m) 445.66 (91.31) 386.64 (136.27) 420.38 (71.19) 385.16 (94.09) 0.0003

Oxygen desaturation with 6-min walk (%) 14 36 14 41 < 0.0001

Biomarkers data for 5 subjects were not available. Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables, respectively. aCAT
score range from 0 to 40, with higher scores indicating greater severity symptoms. bTotal count of exacerbations requiring ED visit or hospitalization since
entering the study. cTotal count of exacerbations since entering the study. dTotal Exacerbations for baseline
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criteria for PRISm, Fig. 7 displays the distributions of
GOLD 0–4 stages and Clusters 1–4 of the same subjects
on a post-bronchodilator FEV1-FEV1/FVC map. Cluster 2
is located nearest to the PRISm quadrant defined by the
above spirometry criteria, as compared to GOLD 1 and 2.
While a further study on a large PRISm cohort is needed
to establish the link between imaging-based Cluster 2 and
PRISm, the above analysis suggests that the current ap-
proach may be able to identify a clinically meaningful
sub-population with COPD as compared with spirometric
classification.
Castaldi et al. [14] classified four clusters in current and

former smokers from the COPDGene study using four

variables (features); FEV1% predicted, CT-quantified
emphysema, segmental wall area% and emphysema
distribution. Their four clusters are: relatively resistant
smokers (i.e., no/mild obstruction and minimal em-
physema despite heavy smoking), mild upper zone
emphysema-predominant, airway disease-predominant
and severe emphysema, with Clusters 2 and 4 having
strong genetic associations. They included a PFT
measure (FEV1% predicted) as one of the input fea-
tures for cluster analysis, which is different from our
MICA approach employing solely imaging-based vari-
ables to identify clusters and then establish associa-
tions of derived clusters with PFTs and other clinical

Fig. 6 PRM based on GOLD stages and imaging-based derived clusters

Fig. 7 FEV1 and FEV1/FVC based of GOLD stages and imaging-based clusters. Dashed lines represent fixed threshold criteria (FEV1 = 0.8, FEV1/
FVC = 0.7) used to distinguish possible PRISm subjects

Haghighi et al. Respiratory Research  (2018) 19:178 Page 10 of 13



measures and symptoms. Their clusters appear to overlap
with our clusters. For example, our Cluster 1 (or 4) is
similar to their Cluster 1 (or 4). Although our Cluster 2
and 3 had relatively lower FEV1/FVC (but being close to
the cut-off threshold of 0.7) than that of Cluster 1, they
exhibited a significantly increased fSAD% (P < 0.05) com-
pared to Cluster 1 without a significant increase in
Emph%. Thus, our Cluster 2, which exhibited increased
fSAD%, thicker airway walls, the highest BMI, high BODE
index and low Emph%, may correspond to their Cluster 3
being described as airway-predominant disease, thicker
airway walls, lowest average emphysema of all clusters and
high BMI. In addition, our Cluster 3 showed a relatively
higher upper/lower emphysema ratio than others (Table 6);
being similar to their Cluster 2 characterized by mild
upper zone-predominant emphysema. Castaldi et al. [17]
further investigated reproducibility of clustering analysis
across multiple COPD cohorts using a set of common var-
iables, suggesting that COPD heterogeneity may be char-
acterized as a continuous trait.
Woodruff et al. [35] divided subjects (including

both current and former smokers) from the SPIR-
OMCS study into five categories A-E: (A) never smoked,
preserved pulmonary function (B) CAT ≤10 (asymptotic);
(C) CAT ≥10 (symptomatic), mild-to-moderate (GOLD
stage 1 or 2); (D) CAT ≤10 and (E) CAT ≥10. The symp-
tomatic subjects with preserved pulmonary function in
category C had greater airway-wall thickness, but did not
have higher Emph%, as compared with asymptotic
subjects. These category-C subjects were younger with
higher BMI and were more likely current smokers.
These characteristics are strikingly similar to those of
our Clusters 1 and 2 subjects. Cluster 1 included sub-
jects that had thicker airway walls compared to Clus-
ters 3 and 4, and had minimal-to-no emphysema. In
addition, Cluster 2 exhibited several characteristics
similar to Cluster 1, including lower symptomatology
with CAT ≥10, thicker airway walls, minimal-to-no
emphysema and FEV1/FVC = 0.68 (close to 0.74 for
Cluster 1) as well as the highest BMI and βtissue
among all clusters. Nonetheless, different from Clus-
ter 1 but similar to Cluster 4, Cluster 2 exhibited se-
vere activity limitations and had relatively higher
fSAD% and lower Jacobian. The major difference

between Clusters 2 and 4 is that Cluster 2 had the
highest BMI and βtissue. This suggests that symptom-
atic current smoker subjects in category C with pre-
served pulmonary function may be further divided
into two sub-groups (Clusters 1 and 2) with distinct
characteristics.
Garcia-Aymerich et al. [10] identified three groups

in a cohort of 342 subjects recruited for the Pheno-
type and Course of COPD (PAC-COPD) study in
Spain, using a comprehensive set of clinical, func-
tional, biological and imaging metrics. Groups 1, 2
and 3 had respective FEV1/FVC of 0.44, 0.57 and
0.61. In addition to milder airflow limitation, Group
3 exhibited high BMI (obesity), systemic inflamma-
tion, cardiovascular disease, diabetes and activity
limitation. These characteristics appear to overlap
with those of our Cluster 2. While both Clusters 2
and 3 were fSAD-dominant subjects, they were char-
acterized by increased and decreased airway
wall-thickness, respectively. Also, Sood et al. [38]
suggested that higher BMI (obesity) might contribute
to systemic inflammation.
Our study here has several limitations. It focused on

current smokers and was a cross-sectional study. In the
future, the analysis shall be extended to include former
smokers and compared with the current analysis. Also,
our analysis will be extended to longitudinal data and
cross validation shall be performed to examine cluster
transition and stability over time. As a preliminary study,
we included in the Additional file 1 the cluster analysis
of longitudinal data from a small COPD cohort, showing
consistently four stable clusters. While our use of image
matching is refined to the level of accounting for lobar
slippage, it requires segmentation of the lobes at both in-
spiration and expiration.

Conclusions
In conclusion, using a K-means clustering method we
found four distinct stable clusters of COPD subtypes.
These are Cluster 1, non-severe COPD with normal
airway structure (relatively resistant smoker); Cluster
2, a mix of non-severe and severe COPD with fSAD
dominance, low emphysema percentage, high tissue
fraction with wall thickening; Cluster 3, a mix of
non-severe and severe COPD, fSAD dominance with
decreased wall thickness and luminal narrowing; Clus-
ter 4, a mix of severe fSAD and emphysema with
significant alterations in functional and structural var-
iables. A decision tree analysis with only 7 discrimin-
ant imaging-based variables allows classification with
an accuracy close to the “original” cluster member-
ship. The unique structural and functional character-
istics observed in each cluster can help shed light on
the existing heterogeneous nature of the disease.

Table 6 Upper/lower zone Emph% and fSAD%

Variable Cluster 1
(N = 96)

Cluster 2
(N = 45)

Cluster 3
(N = 88)

Cluster 4
(N = 55)

P value

fSAD
(U/L ratio)

9.54
(14.04)

5.1
(6.06)

5.92
(6.64)

1.63
(1.42)

< 0.0001

Emph
(U/L ratio)

2.14
(3.15)

2.21
(2.36)

2.52
(3.42)

1.6
(1.85)

0.389

fSAD/Emph
(% Total)

1.75
(1.67)

5.91
(7.44)

5.15
(4.16)

4.60
(4.72)

< 0.0001
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Additional file

Additional file 1: Table S1. Standardized loadings of seven principal
components based upon correlation matrix. Table S2. Major structural
and functional imaging-based variables in four imaging-based clusters for
45 current smokers from longitudinal study. Figure S1. Clustering analysis,
a: Internal property in different clustering methods; b: Clustering stability
analysis between K-means and Hierarchical clustering with different number
of clusters. Figure S2. Cluster analysis in training set (a) and validation set
(b) with four clusters. Figure S3. A scree plot for determining the optimal
number of principal components for longitudinal study. (DOCX 276 kb)
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