278 research outputs found

    Multiwavelength Observations of one Galaxy in Marano Field

    Full text link
    We report the multiwavelength observations of one intermediate redshift (z=0.3884) galaxy in the Marano Field. These data include ISOCAM middle infrared, VLT/FORS2 spectroscopic and photometric data, associated with the ATCA 1.4 GHz radio and ROSAT PSPC X-ray observations from literature. The Spectral Energy Distribution obtained by VLT spectroscopy exhibits its early-type galaxy property, while, in the same time, it has obvious [OIII]5007 emission line. The diagnostic diagram from the optical emission line ratios shows its Seyfert galaxy property. Its infrared-radio relation follows the correlation of sources detected at 15 \mu and radio. It has a high X-ray luminosity of 1.26*10^{43} ergs/s, which is much higher than the general elliptical galaxies s with the similar B band luminosity, and is about 2 orders of magnitude higher than the derived value from the star forming tracer, the FIR luminosity. This means that the X-ray sources of this galaxy are not stellar components, but the AGN is the dominant component.Comment: 6 pages, 1 PS figure and 4 tables. Publication in ChJAA, Suppl., the Special Issue for The Fifth Microquasar Workshop 2004: http://chjaa.bao.ac.cn/, 2005, Vol.5, 335-34

    Rejection of randomly coinciding events in Li2_2100^{100}MoO4_4 scintillating bolometers using light detectors based on the Neganov-Luke effect

    Get PDF
    Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate 100^{100}Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double decay of 100^{100}Mo in enriched Li2_2100^{100}MoO4_4 detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of 750\sim 750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of 6×105\sim 6\times10^{-5} counts/(keV\cdotkg\cdoty), to the background counting rate in the region of interest for a large volume (90\sim 90 cm3^3) Li2_2100^{100}MoO4_4 detector. This background level is very encouraging in view of a possible use of the Li2_2100^{100}MoO4_4 solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project

    Morphological Composition of z~0.4 groups: The site of S0 formation

    Full text link
    The low redshift Universe (z<~0.5) is not a dull place. Processes leading to the suppression of star formation and morphological transformation are prevalent: this is particularly evident in the dramatic upturn in the fraction of S0-type galaxies in clusters. However, until now, the process and environment of formation has remained unidentified. We present a HST-based morphological analysis of galaxies in the redshift-space selected group and field environments at z~0.4. Groups contain a much higher fraction of S0s at fixed luminosity than the lower density field, with >99.999% confidence. Indeed the S0 fraction in groups is at least as high as in z~0.4 clusters and X-ray selected groups, which have more luminous Intra Group Medium (IGM). An 97% confident excess of S0s at >=0.3Mpc from the group centre at fixed luminosity, tells us that formation is not restricted to, and possibly even avoids, the group cores. Interactions with a bright X-ray emitting IGM cannot be important for the formation of the majority of S0s in the Universe. In contrast to S0s, the fraction of elliptical galaxies in groups at fixed luminosity is similar to the field, whilst the brightest ellipticals are strongly enhanced towards the group centres (>99.999% confidence within 0.3Mpc). We conclude that the group and sub-group environments must be dominant for the formation of S0 galaxies, and that minor mergers, galaxy harassment and tidal interactions are the most likely responsible mechanisms. This has implications not only for the inferred pre-processing of cluster galaxies, but also for the global morphological and star formation budget of galaxies: as hierarchical clustering progresses, more galaxies will be subject to these transformations as they enter the group environment.Comment: 13 pages, 6 figures. Accepted for publication in Ap

    Observational evidence for the presence of PAHs in distant Luminous Infrared Galaxies using ISO and Spitzer

    Full text link
    We present ISOCAM 15 micron and MIPS 24 micron photometry of a sample of 16 distant Luminous Infrared Galaxies (LIRGs) characterized by a median luminosity L(IR) 2x10^11 Lsol and redshift z = 0.7 (distributed from z = 0.1 to 1.2). While some sources display 24/15 micron flux ratios also consistent with a featureless continuum dominating their mid-infrared (MIR) spectral energy distributions (SEDs), the presence of prominent emission features such as the Polycyclic Aromatic Hydrocarbons is clearly required to explain the observed colors for more than half of the sample. As a result, a general good agreement is observed between the data and predictions from the local starburst-dominated SEDs that have been used so far to constrain IR galaxy evolution. This is consistent with the star-forming nature of LIRGs derived from previous works, even though our approach cannot rule out the dominance of an AGN in some cases. Our study also supports the possibility of tracing the total IR luminosity of distant galaxies (up to z ~ 1) from their MIR emission.Comment: 4 pages, 3 figures, Astronomy & Astrophysics Letters (in press

    Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    Get PDF
    We study the infrared (IR) properties of high-redshift galaxies using deep Spitzer 24, 70, and 160 micron data. Our primary interest is to improve the constraints on the total IR luminosities, L(IR), of these galaxies. We combine the Spitzer data in the southern Extended Chandra Deep Field with a K-band-selected galaxy sample and photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 micron flux densities of 1.5 < z < 2.5 galaxies as a function of 24 micron flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < z < 2.5 and S(24)=53-250 micro-Jy have L(IR) derived from their average 24-160 micron flux densities within factors of 2-3 of those derived from the 24 micron flux densities only. However, L(IR) derived from the average 24-160 micron flux densities for galaxies with S(24) > 250 micro-Jy and 1.5 < z < 2.5 are lower than those derived using only the 24 micron flux density by factors of 2-10. Galaxies with S(24) > 250 micro-Jy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN may contribute to the high 24 micron emission. Based on the average 24-160 micron flux densities, nearly all 24 micron-selected galaxies at 1.5 < z < 2.5 have L(IR) < 6 x 10^12 solar luminosities, which if attributed to star formation corresponds to < 1000 solar masses per year. This suggests that high redshift galaxies may have similar star formation efficiencies and feedback processes as local analogs. Objects with L(IR) > 6 x 10^12 solar luminosities are quite rare, with a surface density ~ 30 +/- 10 per sq. deg, corresponding to ~ 2 +/- 1 x 10^-6 Mpc^-3 over 1.5 < z < 2.5.Comment: Accepted for Publication in ApJ. AASTeX format. 34 pages, 12 figures. Updated references and other small textual revision

    Background suppression in massive TeO2_2 bolometers with Neganov-Luke amplified light detectors

    Full text link
    Bolometric detectors are excellent devices for the investigation of neutrinoless double-beta decay (0νββ\nu\beta\beta). The observation of such decay would demonstrate the violation of lepton number, and at the same time it would necessarily imply that neutrinos have a Majorana character. The sensitivity of cryogenic detectors based on TeO2_2 is strongly limited by the alpha background in the region of interest for the 0νββ\nu\beta\beta of 130^{130}Te. It has been demonstrated that particle discrimination in TeO2_2 bolometers is possible measuring the Cherenkov light produced by particle interactions. However an event-by-event discrimination with NTD-based light detectors has to be demonstrated. We will discuss the performance of a highly-sensitive light detector exploiting the Neganov-Luke effect for signal amplification. The detector, being operated with NTD-thermistor and coupled to a 750 g TeO2_2 crystal, shows the ability for an event-by-event identification of electron/gamma and alpha particles. The extremely low detector baseline noise, RMS 19 eV, demonstrates the possibility to enhance the sensitivity of TeO2_2-based 0νββ\nu\beta\beta experiment to an unprecedented level

    First results of the ROSEBUD Dark Matter experiment

    Full text link
    Rare Objects SEarch with Bolometers UndergrounD) is an experiment which attempts to detect low mass Weak Interacting Massive Particles (WIMPs) through their elastic scattering off Al and O nuclei. It consists of three small sapphire bolometers (of a total mass of 100 g) with NTD-Ge sensors in a dilution refrigerator operating at 20 mK in the Canfranc Underground Laboratory. We report in this paper the results of several runs (of about 10 days each) with successively improved energy thresholds, and the progressive background reduction obtained by improvement of the radiopurity of the components and subsequent modifications in the experimental assembly, including the addition of old lead shields. Mid-term plans and perspectives of the experiment are also presented.Comment: 14 pages, 8 figures, submitted to Astroparticle Physic

    Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release

    Full text link
    With the goal of investigating the degree to which theMIR luminosity in theWidefield Infrared Survey Explorer (WISE) traces the SFR, we analyze 3.4, 4.6, 12 and 22 {\mu}m data in a sample of {\guillemotright} 140,000 star-forming galaxies or star-forming regions covering a wide range in metallicity 7.66 < 12 + log(O/H) < 9.46, with redshift z < 0.4. These star-forming galaxies or star-forming regions are selected by matching the WISE Preliminary Release Catalog with the star-forming galaxy Catalog in SDSS DR8 provided by JHU/MPA 1.We study the relationship between the luminosity at 3.4, 4.6, 12 and 22 {\mu}m from WISE and H\alpha luminosity in SDSS DR8. From these comparisons, we derive reference SFR indicators for use in our analysis. Linear correlations between SFR and the 3.4, 4.6, 12 and 22 {\mu}m luminosity are found, and calibrations of SFRs based on L(3.4), L(4.6), L(12) and L(22) are proposed. The calibrations hold for galaxies with verified spectral observations. The dispersion in the relation between 3.4, 4.6, 12 and 22 {\mu}m luminosity and SFR relates to the galaxy's properties, such as 4000 {\deg}A break and galaxy color.Comment: 10 pages, 3 figure
    corecore