1,461 research outputs found
Prescription for experimental determination of the dynamics of a quantum black box
We give an explicit prescription for experimentally determining the evolution
operators which completely describe the dynamics of a quantum mechanical black
box -- an arbitrary open quantum system. We show necessary and sufficient
conditions for this to be possible, and illustrate the general theory by
considering specifically one and two quantum bit systems. These procedures may
be useful in the comparative evaluation of experimental quantum measurement,
communication, and computation systems.Comment: 6 pages, Revtex. Submitted to J. Mod. Op
South Atlantic island record reveals a South Atlantic response to the 8.2 kyr event
International audienceOne of the most distinct climate fluctuations during the Holocene is the short and rapid event centred around 8200 years ago, the 8.2 kyr event, which was most likely triggered by glacial melt-water forcing from the receding Laurentide ice-sheet. Evidence for this cooling has primarily been reported from sites around the North Atlantic, but an increasing number of observations imply a more wide-spread occurrence. Palaeoclimate archives from the Southern Hemisphere have hitherto failed to uncover a distinct climatic anomaly associated with the 8.2 kyr event. Here we present a lake sediment record from Nightingale Island in the central South Atlantic showing enhanced precipitation between 8275 and 8025 cal. yrs BP, most likely as a consequence of increased sea surface temperature (SST). We show that this is consistent with climate model projections of a warming of the South Atlantic in response to reduced north-ward energy transport during the 8.2 kyr event
Structural identifiability of surface binding reactions involving heterogeneous analyte : application to surface plasmon resonance experiments
Binding affinities are useful measures of target interaction and have an important role in understanding biochemical reactions that involve binding mechanisms. Surface plasmon resonance (SPR) provides convenient real-time measurement of the reaction that enables subsequent estimation of the reaction constants necessary to determine binding affinity. Three models are
considered for application to SPR experiments—the well mixed Langmuir model and two models that represent the binding reaction in the presence of transport effects. One of these models, the effective rate constant approximation, can be derived from the other by applying a quasi-steady state assumption. Uniqueness of the reaction constants with respect to SPR measurements
is considered via a structural identifiability analysis. It is shown that the models are structurally unidentifiable unless the sample concentration is known. The models are also considered for analytes with heterogeneity in the binding kinetics. This heterogeneity further confounds the identifiability of key parameters necessary for reliable estimation of the binding affinit
Prediction and Simulator Verification of Roll/Lateral Adverse Aeroservoelastic Rotorcraft–Pilot Couplings
The involuntary interaction of a pilot with an aircraft can be described as pilot-assisted oscillations. Such
phenomena are usually only addressed late in the design process when they manifest themselves during ground/flight
testing. Methods to be able to predict such phenomena as early as possible are therefore useful. This work describes a
technique to predict the adverse aeroservoelastic rotorcraft–pilot couplings, specifically between a rotorcraft’s roll
motion and the resultant involuntary pilot lateral cyclic motion. By coupling linear vehicle aeroservoelastic models
and experimentally identified pilot biodynamic models, pilot-assisted oscillations and no-pilot-assisted oscillation
conditions have been numerically predicted for a soft-in-plane hingeless helicopter with a lightly damped regressive
lead–lag mode that strongly interacts with the roll modeat a frequency within the biodynamic band of the pilots. These
predictions have then been verified using real-time flight-simulation experiments. The absence of any similar adverse
couplings experienced while using only rigid-body models in the flight simulator verified that the observed
phenomena were indeed aeroelastic in nature. The excellent agreement between the numerical predictions and the
observed experimental results indicates that the techniques developed in this paper can be used to highlight the
proneness of new or existing designs to pilot-assisted oscillation
The ACIGA Data Analysis programme
The Data Analysis programme of the Australian Consortium for Interferometric
Gravitational Astronomy (ACIGA) was set up in 1998 by the first author to
complement the then existing ACIGA programmes working on suspension systems,
lasers and optics, and detector configurations. The ACIGA Data Analysis
programme continues to contribute significantly in the field; we present an
overview of our activities.Comment: 10 pages, 0 figures, accepted, Classical and Quantum Gravity,
(Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves,
Tirrenia, Pisa, Italy, 6-11 July 2003
Investigations of the pi N total cross sections at high energies using new FESR: log nu or (log nu)^2
We propose to use rich informations on pi p total cross sections below N= 10
GeV in addition to high-energy data in order to discriminate whether these
cross sections increase like log nu or (log nu)^2 at high energies, since it is
difficult to discriminate between asymptotic log nu and (log nu)^2 fits from
high-energy data alone. A finite-energy sum rule (FESR) which is derived in the
spirit of the P' sum rule as well as the n=1 moment FESR have been required to
constrain the high-energy parameters. We then searched for the best fit of pi p
total cross sections above 70 GeV in terms of high-energy parameters
constrained by these two FESR. We can show from this analysis that the (log
nu)^2 behaviours is preferred to the log nu behaviours.Comment: to be published in Phys. Rev. D 5 pages, 2 eps figure
Neural Modeling and Control of Diesel Engine with Pollution Constraints
The paper describes a neural approach for modelling and control of a
turbocharged Diesel engine. A neural model, whose structure is mainly based on
some physical equations describing the engine behaviour, is built for the
rotation speed and the exhaust gas opacity. The model is composed of three
interconnected neural submodels, each of them constituting a nonlinear
multi-input single-output error model. The structural identification and the
parameter estimation from data gathered on a real engine are described. The
neural direct model is then used to determine a neural controller of the
engine, in a specialized training scheme minimising a multivariable criterion.
Simulations show the effect of the pollution constraint weighting on a
trajectory tracking of the engine speed. Neural networks, which are flexible
and parsimonious nonlinear black-box models, with universal approximation
capabilities, can accurately describe or control complex nonlinear systems,
with little a priori theoretical knowledge. The presented work extends optimal
neuro-control to the multivariable case and shows the flexibility of neural
optimisers. Considering the preliminary results, it appears that neural
networks can be used as embedded models for engine control, to satisfy the more
and more restricting pollutant emission legislation. Particularly, they are
able to model nonlinear dynamics and outperform during transients the control
schemes based on static mappings.Comment: 15 page
Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake
In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available
- …