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Abstract

Binding affinities are useful measures of target interaction and have an important role in understanding biochemical reactions
that involve binding mechanisms. Surface plasmon resonance (SPR) provides convenient real-time measurement of the reaction
that enables subsequent estimation of the reaction constants necessary to determine binding affinity. Three models are
considered for application to SPR experiments—the well mixed Langmuir model and two models that represent the binding
reaction in the presence of transport effects. One of these models, the effective rate constant approximation, can be derived from
the other by applying a quasi-steady state assumption. Uniqueness of the reaction constants with respect to SPR measurements
is considered via a structural identifiability analysis. It is shown that the models are structurally unidentifiable unless the
sample concentration is known. The models are also considered for analytes with heterogeneity in the binding kinetics. This
heterogeneity further confounds the identifiability of key parameters necessary for reliable estimation of the binding affinity.

Key words: Biomedical systems, structural identifiability, surface plasmon resonance, surface-volume reactions, binding
affinity, system identification

1 Introduction

Surface plasmon resonance (SPR) provides convenient
real-time measurement of the biophysical parameters of
noncovalent interactions between a free flowing analyte
and an immobilised ligand. These measurements subse-
quently allow estimation of reaction constants of asso-
ciation and dissociation from the target protein on the
SPR chip, permitting estimation of the relevant binding
affinity (the ratio of the dissociation and association con-
stants). Binding affinities are useful measures of target
interaction and have an important role in understanding
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Evans).
1 Corresponding author: N. D. Evans. Tel. +44 24 76522062.
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biochemical reactions that involve binding mechanisms,
in particular for antibody with target protein interac-
tion.

A number of authors have considered the problem of de-
termining the rate constants for a binding reaction in
which one of the reactants is immobilised on a sensor sur-
face. One approach is to model the reaction as occurring
on the sensor surface via a reacting boundary condition
on a transport equation for the analyte (Myszka et al.,
1998; Edwards et al., 1999). Another approach has been
to include a receptor layer in the model, to allow for the
dextran layer in which the receptor is immobilised, and
to also consider analyte diffusion into the layer to reach
binding sites (Edwards, 2001). Typically the full partial
differential equations framework is used to consider the
appropriateness of ordinary differential equation (ODE)
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based models that are more easily applied to experimen-
tal data to yield estimates for the binding constants (see,
for example, Edwards (2001)). The simplest ODEmodel
is the rapid mixing model that considers the reaction, af-
ter a brief transient period, as the same as two reactants
in a well-mixed volume. However, the measured interac-
tion between analyte and receptor is a combination of
the binding reaction and transport effects arising from
the flow and diffusive processes (Myszka et al., 1998).
Therefore, if the rapid mixing model is not appropri-
ate then systematic errors in the estimates for the rate
constants can arise (Chaiken et al., 1992). Myszka et al.
(1998) propose a two-compartment model that includes
transport effects while modelling the binding process us-
ing Langmuir-type mass action kinetics. Under a quasi-
steady state (QSS) assumption this two-compartment
model can be reduced to a single differential equation for
the bound analyte. This QSS model is the effective rate
constant approximation. Edwards (2001) derived the ef-
fective rate constant approximation directly from con-
sideration of the fluid dynamics of the analyte in the flow
and the receptor layer, and the subsequent binding. This
model has been shown to provide a good approximation
under certain conditions (Edwards, 2001).

In order to estimate the (unknown) model parameters
from SPR data it is necessary to include in the model
an output structure, which corresponds to the function
of the model variables that is to be compared with data.
Before actually collecting experimental data it is neces-
sary to test for uniqueness of the unknown parameters
with respect to this output structure, since estimates
for unidentifiable parameters are effectivelymeaningless.
Such a structural identifiability analysis (Bellman and
Åström, 1970) assesses whether the model output con-
tains enough information to determine all of the model
parameters uniquely (Jacquez, 1996), and relates only
to the structure of the model and output. For linear sys-
tems there are many well-established techniques for per-
forming a structural identifiability analysis (for further
details, and details of nonlinear approaches, see the tuto-
rial by Godfrey andDiStefano III (1987) and other works
in the same volume and the book by Walter (1982)).

For nonlinear systems, such as those involving binding
kinetics, greater care has to be taken over the choice
of technique, since the assumption that any external
input is persistently exciting becomes more restrictive,
and computational tractability becomes a greater issue.
For a single analytic input (including zero), perhaps the
easiest approach conceptually is the Taylor series ap-
proach introduced by Pohjanpalo (1978), which uses the
uniqueness of the coefficients of a Taylor series expan-
sion of the output about a known time point to deter-
mine uniqueness of the unknown parameters. Since the
list of coefficients is infinite it is necessary to ensure that
sufficient terms have been considered for a full analysis,
though some work has been done for rational systems to
give an upper bound on the number of terms required

(Margaria et al., 2001). Without an appropriate upper
bound the approach only provides a sufficient condition
for identifiability. Computational complexity arises be-
cause determining the coefficients requires repeated dif-
ferentiation of the output and evaluation at the known
time point. Other approaches that are suitable for sys-
tems without input (or single analytic input) are based
on: the existence of a smooth transformation between
locally observable models with identical outputs (Evans
et al., 2002), differential algebra (Ljung and Glad, 1994;
Saccomani et al., 2003), or on polynomial realisation the-
ory (Němcová, 2010).

In this paper a differential equation for the output and its
derivatives will be obtained that permits a direct anal-
ysis of the uniqueness of the parameters. This approach
is similar in nature to that taken by Denis-Vidal et al.
(2001). Essentially this is an elimination problem in con-
verting from a state space description of the model to an
input-output one. If the underlying system is locally ob-
servable then one way to achieve this is to apply a coor-
dinate transformation that yields the observable normal
form (Isidori, 1995), in which the last state equation is
the required input-output map. However, a number of
authors have sought to exploit the polynomial nature of
many system models and so use algebraic techniques to
perform the state to output conversion.

A rich area of research in structural identifiability has
considered the identifiability problem via determina-
tion of a characteristic set of a differential ideal defining
the system (see Ollivier (1990); Glad and Ljung (1990);
Ljung and Glad (1994); Audoly et al. (2001); Saccomani
et al. (2003) for example). With a suitable ranking on
the variables the identifiability can be determined di-
rectly from terms in the characteristic set (Glad, 1992).
Glad (1991) considered the problem of conversion from
state space description to input-output form via char-
acteristic sets, which has also been the topic of study by
others (Saccomani et al., 2001; Bearup et al., 2011). For
systems described by characteristic sets in input-output
form Glad (1992) showed that a canonical parameterisa-
tion of the characteristic set is uniquely identifiable. In
effect the canonical parameterisation (with correspond-
ing characteristic set) provides an exhaustive summary
for the model (Saccomani et al., 2001).

Forsman (1991) considered the application of methods
from constructive algebra to the problem of state elimi-
nation to derive input-output relations. The approaches
developed involved the generation of a suitable (differen-
tial) ideal and the determination of a suitable Gröbner
Basis. The ideal required is generated from successive
Lie derivatives of the output that, for observable sys-
tems, defines the coordinate transformation into Observ-
able Normal Form. Andersson (1994) considered a sim-
ilar ideal and the determination of a suitable Gröbner
Basis to tackle the identifiability problem. Using this ap-
proach the ideals are considered with the parameter in-
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cluded as indeterminates and the form of the resulting
Gröbner Basis enables determination of the identifiabil-
ity of the model.

For nonlinear systems the problem of computational in-
tractability means that different approaches should be
viewed as complementary, rather than mutually exclu-
sive.

2 Compartmental models

Three core model types are applied to the problem of es-
timating kinetic rate constants from SPR data: the first
model is the well-mixed Langmuir model, with the sec-
ond model being the two-compartment model proposed
by Myszka et al. (1998) that includes transport effects,
while the third model, the effective rate constant ap-
proximation, can be derived from the second via a quasi-
steady state assumption (or directly from consideration
of the fluid dynamics of the analyte in the flow and sub-
sequent binding (Edwards, 2001)).

Since the (Bio-Rad) SPR platform permits multiple an-
alytes (up to six) across multiple immobilised ligands
(again up to six) to be run in a single experiment the
models are each applied to the interaction spots (up to
36 in total), with some parameter values possibly being
common across certain channels. In addition, the possi-
bility of the analyte being heterogeneous with respect to
the binding kinetics is also considered.

2.1 Langmuir model

The homogeneous analyte form of the Langmuir model
is given by:

Ḃ(t) = kaI(t) (R−B(t))− kdB(t) (1)

where B(t) is the average bound (area) concentration,
ka and kd are the association and dissociation rate con-
stants, and R is the maximum (area) density of bound
analyte possible at the interaction site. Finally, I(t) is
the inlet concentration of analyte in the channel and is
given by

I(t) =

{
0 t �∈ [ts, tf ]

CT t ∈ [ts, tf ]
(2)

where CT is the analyte sample concentration (in the
flow), ts is the start time and tf the finish time for the
association phase (the interval [ts, tf ]). Therefore, the
dissociation phase corresponds to t > tf .

The output structure for the model consists of the mea-
surements of bound analyte and is given by

y(t) = αB(t), (3)

where α is the conversion factor from the units of B(t)
to the response units (RU) of the sensorgrams (1 RU =
10−3 ng/mm2).

Two forms of heterogeneity in the analyte are consid-
ered: the analyte consists of a heterogeneous mixture
(for example a polyclonal antibody sample), or a ho-
mogeneous mixture in which the analyte exhibits het-
erogeneity in its binding kinetics (such as that resulting
from different binding domains on an IgM sample, for
example).

For the heterogeneous mixture version of the Langmuir
model it is assumed that the analyte consists of a number
of different binding species with (unknown) inlet sample
concentrations of CTi (so that CT =

∑m
i=1 CTi). The

modified model is then given by the following:

Ḃi(t) = kaiIi(t)

(
R−

m∑
i=1

Bi(t)

)
− kdiBi(t) (4)

where Bi(t) is the average bound (area) concentration
for analyte species i (i = 1, . . . ,m), kai and kdi are the
association and dissociation rate constants, and

Ii(t) =

{
0 t �∈ [ts, tf ]

CTi t ∈ [ts, tf ]
(5)

for i = 1, . . . ,m. In this case, assuming that the binding
species are indistinguishable at the receptor, the output
structure is given by the following:

yi(t) = α
m∑
i=1

Bi(t). (6)

For the heterogeneous analyte version of the Langmuir
model it is assumed that the analyte is able to bind in a
number of ways. Thus the modified model in this case is
similar to (4) except that the inlet concentration, I(t),
is the same for all binding types:

Ḃi(t) = kaiI(t)

(
R−

m∑
i=1

Bi(t)

)
− kdiBi(t) (7)

where Bi(t) is the average bound (area) concentration
for binding mechanism i; kai and kdi are the association
and dissociation rate constants, and I(t) is given by (2).
In this case, the output structure is also given by (6).
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Fig. 1. Schematic of two-state Langmuir binding model that
includes transport effects (Myszka et al., 1998).

2.2 Langmuir with transport model

The model proposed by Myszka et al. (1998) (see Fig 1)
is given by the following:

hĊ = −kaC(R−B) + kdB + kM (I − C)

Ḃ = kaC(R−B)− kdB
(8)

where: C(t) is the (volume) concentration of analyte at
the surface of the channel; h = V/S, where V is the
volume in contact with the surface from which binding
takes place and S is the surface area; and kM is the
transport coefficient describing diffusive movement of
analyte between the flow and the volume in contact with
the surface. The output is again given by (3).

Note that, Myszka et al. (1998) report that for the range
of parameter values associated with Biacore experiments
the solution to (8) and (3) is insensitive to the value
of h. This remark suggests a lack of structural (and/or
numerical) identifiability for h that is investigated in
subsequent sections.

The heterogeneous mixture version of the model is given
by the following:

hĊi = −kaiCi

(
R−

m∑
i=1

Bi

)
+ kdiBi + kM (Ii − Ci)

Ḃi = kaiCi

(
R−

m∑
i=1

Bi

)
− kdiBi

(9)
for i = 1, . . . ,m. Note that the different binding species
are assumed to differ only in their binding characteris-
tics. The inflows, Ii(t), are given by (5) and the output
is once again given by (6).

The heterogeneous analyte version of the model is given
by the following:

hĊ =
m∑
i=1

[
−kaiC

[
R−

m∑
i=1

Bi

]
+ kdiBi

]
+ kM (I − C)

Ḃi = kaiC

(
R−

m∑
i=1

Bi

)
− kdiBi

(10)

for i = 1, . . . ,m. Again note that the different binding
species are assumed to differ only in their binding char-
acteristics. The inflow, I(t), is given by (2) and the out-
put is once again given by (6).

2.3 Effective rate constant approximation

Applying a quasi-steady state assumption to (8) consists

of solving Ċ(t) = 0 for C(t) to yield

C(t) =
kdB(t) + kMI(t)

ka(R−B(t)) + kM

and then substituting this into the equation for Ḃ(t) to
give

Ḃ(t) =
kaI(t)(R−B(t))− kdB(t)

1 + (ka/kM )(R−B(t))
. (11)

The inflow, I(t), and output, y(t) for the quasi-steady
state version of the model are still given by (2) and (3).
Equation (11) is the effective rate constant approxima-
tion derived by Edwards (2001), who showed that this
equation gives a good approximation to a full fluid dy-
namics model up to O(Da2) where

kaR/kM = Da hd.

Da is the Damköhler number, which is the ratio of the
reaction velocity to diffusion velocity in the diffusive
boundary layer, and hd is a positive constant that incor-
porates effects of the receptor layer (see Edwards (2001)
for details).

Notice from (11), as discussed by Myszka et al. (1998),
that the parameter h has been eliminated from the
model. Therefore in the (quasi) steady state situation
this parameter has no bearing on the observation.

The heterogeneous mixture version of the model is given
by the following:

Ḃi(t) =
kaiIi(t) [R−∑m

i=1 Bi(t)]− kdiBi(t)

1 + (kai/kM ) [R−∑m
i=1 Bi(t)]

(12)

for i = 1, . . . ,m. The inflows, Ii(t), and output, y(t), are
once again given by (5) and (6).

The heterogeneous analyte version of the model is given
by the following:

Ḃi(t) =
kaiI(t) [R−∑m

i=1 Bi(t)]− kdiBi(t)

1 + (kai/kM ) [R−∑m
i=1 Bi(t)]

(13)

for i = 1, . . . ,m. The inflow, I(t), and output, y(t), are
once again given by (2) and (6).
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3 Structural identifiability

In this section the uniqueness of the unknown parame-
ters in a general nonlinear model is considered with re-
spect to the (single) output. More precisely, let p ∈ Ω ⊂
R

r denote a vector comprising the unknown parameters
in the model, which belongs to an open set of admissi-
ble vectors. To make the parameter dependence of the
model output more explicit it is written y(t,p).

Two parameter vectors p,p ∈ Ω are indistinguishable,
written p ∼ p, if they give rise to identical outputs:

y(t,p) = y(t,p) for all t ≥ 0.

For generic p ∈ Ω, the parameter pi is locally identifiable
if there is a neighbourhood, N , of p such that

p ∈ N, p ∼ p implies that pi = pi.

In particular, if N = Ω in the above definition then pi
is globally identifiable, otherwise it is nonuniquely (lo-
cally) identifiable. Notice that, for a given output, a lo-
cally identifiable parameter can take any of a distinct
(countable) set of values. If there does not exist a suit-
able neighbourhood N then pi is unidentifiable and, for
a given output, can take an (uncountably) infinite set of
values.

A systemmodel is structurally globally identifiable (SGI)
if all parameters are globally identifiable; it is struc-
turally locally identifiable (SLI) if all parameters are lo-
cally identifiable and at least one is nonuniquely identi-
fiable; and the model is structurally unidentifiable (SU)
if at least one parameter is unidentifiable.

Following a similar approach to that taken by Denis-
Vidal et al. (2001), suppose that a rational equation can
be generated for the output that only involves y(t,p)
and its derivatives. Then any indistinguishable parame-
ter vector, p, must also satisfy the same equation with p
replaced by p. Therefore, for y(t,p) and its derivatives,
a polynomial of the following form can be generated:

l∑
k=1

ck(p,p)φk(y(t,p), y
′(t,p), y′′(t,p), . . . ) = 0 (14)

for all t ≥ 0, where φk(y(t,p), y
′(t,p), y′′(t,p), . . . ) is a

monomial in y(t,p) and its derivatives. If the φk(·) are
linearly independent then it must be the case that

ck(p,p) = 0 k = 1, . . . , l

and so the relationship between p and p can be deter-
mined. If the only solution is p = p then the model is
SGI, if there is a set of distinct solutions then the model
is SLI and it is SU otherwise.

3.1 Observable Normal Form

Suppose that the model description for the system is of
the following state space form:

ẋ(t,p) = f(x(t,p),p), x(0,p) = x0(p),

y(t,p) = h(x(t,p),p),
(15)

where p ∈ Ω, f(·, ·) and h(·, ·) are rational functions (i.e.,
fractions of polynomials) in both x and p, and the initial
condition x0(·) is a rational function in p. For all p ∈ Ω,
denote byM(p) the largest connected open subset of Rn

containing x0(p) such that both f(·,p) and h(·,p) are
well-defined on M(p).

For λ ∈ C∞(M(p)), the Lie derivative of λ along the
vector field fp = f(·,p) is the smooth function given by

Lfpλ(x) =
∂λ

∂x
(x)fp(x).

Define a vector fieldHp(x) = (μ1(x,p), . . . , μn(x,p))
T
,

where

μ1(x,p) = h(x,p)

μi+1(x,p) = Lfpμi(x,p) i = 1, . . . , n.

If the Jacobian matrix of Hp (with respect to x), eval-
uated at x0(p), has full rank then (15) satisfies the Ob-
servability Rank Condition (ORC) and is locally weakly
observable (Hermann and Krener, 1977). In particular,
z = Hp(x) is a coordinate transformation into the Ob-
servable Normal Form:

żi(t,p) = zi+1(t,p) i = 1, . . . , n− 1

żn(t,p) = μn+1

(
H−1

p (z(t,p)),p
)

y(t,p) = z1(t,p).

(16)

The components of the state, zi(t,p), correspond to the
output, y(t,p), or its derivatives, and the final state
equation gives an output equation. Thus the output sat-
isfies an nth order (ordinary) differential equation (with
suitable initial conditions).

For two indistinguishable parameter vectors, p ∼ p, the
required polynomial output equation (14) can be con-
structed from żn(t,p)− żn(t,p). Note that the monomi-
als are in the output and its derivatives up to order n−1
(φk(y(t,p), y

′(t,p), . . . , y(n−1)(t,p))). These monomial
terms come from the right-hand side of the equation for
żn. Thus if the monomials were not linearly independent
then the output would also satisfy an (n−1)th order dif-
ferential equation (with the same initial conditions)—a
contradiction, unless the particular system initial condi-
tion gives rise to redundancy in the generating equations
(μi(x,p) for i = 1, . . . , n+ 1).
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The output equation with associated initial conditions
uniquely determines the solution for the output of the
original state space model. Thus indistinguishability of
two parameter vectors for a given model requires the
solution of the coefficient terms, ck(p,p) = 0, and the
corresponding initial conditions:

y(0,p) = y(0,p), y(k)(0,p) = y(k)(0,p)

for k = 1, . . . , n− 1.

3.2 Algebraic approach

Notice that the state space system in (15) can be rewrit-
ten in the form

ẋ(t,p)− f(x(t,p),p) = 0,

y(t,p)− h(x(t,p),p) = 0,
(17)

with x(0,p) = x0(p). Since f and h are rational the
left-hand sides of (17) can be rewritten as polynomials
and the system considered to correspond to the differen-
tial ideal generated by these polynomials. A differential
polynomial in y (and its derivatives) only in this ideal
corresponds to an output equation for the system.

Glad (1991) used (differential) characteristic sets to de-
rive input-output representations for polynomial state
space systems, while Forsman (1991) considered the use
of Gröbner Bases for the ideal generated by successive
Lie derivatives of h(·,p) along f(·,p), thus providing an
algebraic method for deriving the Observable Normal
Form.

Consider the following list of rational functions (i.e.,
terms have been collected and written over a common
denominator):

y(t,p)− h(x(t,p),p), ẏ(t,p)− μ2(x(t,p),p),

. . . , y(n)(t,p)− μn+1(x(t,p),p).

Let Ln denote the ideal generated by the numerators
of these functions. Then a Gröbner basis for Ln with a
ranking in which the states, xi, are higher than the out-
put, y, contains an output relation for (17). Let Ij denote
the contraction of the ideal Lj to the polynomial ring
in the indeterminates y, ẏ, . . . , y(j). If n is the smallest
value for which In �= 0 then In is a principal ideal (see
Theorem 5.3 in Forsman (1991)). In this case there are
no other fundamentally different equations of minimal
order describing the output relation.

Forsman (1991) showed that a polynomial system sat-
isfying the ORC for generic initial conditions is alge-
braically observable; and it is known that a system in
state space form of dimension n is algebraically observ-
able if and only if there is no output equation of order

fewer than n in y (Glad, 1990). As seen previously, if the
system satisfies the ORC then the output is the unique
solution of a differential equation of order n, and this is
the generator of the required principal ideal. However,
since the identifiability analysis is performed with re-
spect to particular initial conditions it must first be de-
termined that the generating equations for the ideal Ln

do not change when x is restricted to the submanifold
described by the solution, x(t,p), of the system equa-
tions starting at x0(p).

Saccomani et al. (2003) considered the problem of par-
ticular initial conditions for controlled systems that may
give rise to a change in the characteristic set defining
the system. For these types of systems it was shown that
an accessibility condition ensures that the characteristic
set does not change, and hence an exhaustive summary
can be determined as for generic initial conditions.

Forsman (1991) provides three ways in which Gröbner
Bases can be used to determine the output equation
(that he implemented in Maple):

(1) Find the contraction of Ln to the polynomial ring
in the indeterminate y(n) with coefficients in a field
extension that includes y, ẏ, . . . , y(n−1).

(2) Compute a Gröbner basis for Ln with a ranking in
which the states, xi, are higher than y(n), and y(k)

is ranked higher than y(k−1) for k = 1, . . . , n.
(3) Compute a Gröbner basis for Ln with a ranking in

which the states, xi, are higher than y(n), and the
remaining y(k) are treated as parameters.

3.3 Combining experiments

The ProteOn XPR36 (Bio-Rad) SPR platform enables
up to 36 simultaneous experiments (interactions) to be
performed in a single physical experiment, correspond-
ing to a maximum of six analytes and six ligands. Pa-
rameters can vary across both ligand and analyte, or
across only one of these, or be constant across all lanes
and channels. For an individual interaction between lig-
and i and analyte j partition the vector of unknown pa-
rameters as follows:

p =

(
pT
0 ,p

T
i ,p

T
j ,p

T
ij

)T

where p0 is the vector of parameters constant across all
ligands and analytes; pi is the vector of parameters con-
stant across the analytes; pj is the vector of parameters
constant across the ligands; and pij are the parameters
that vary across all ligands and analytes.

A structural identifiability analysis of an individual in-
teraction, between ligand i and analyte j, gives rise to
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a set of relations between indistinguishable parameter
vectors:

Sij(p) = {p ∈ Ω : p ∼ p} .
Thus to combine individual analyses p0 must be the
same across all Sij ; pi must be the same across Sij , j =
1, . . . , 6; and pj must be the same across Sij , i = 1, . . . , 6.
These constraints may give rise to additional relations
between the parameters for the global experiment.

4 Results

4.1 Langmuir model

For the Langmuir model (1) there are four unknown pa-
rameters, p = (ka, kd, CT , R)T , for the single model out-
put. The output equation is given by (see Appendix A.2)

ẏ(t,p) + (kaCT + kd) y(t,p)− αkaCTR = 0

in the association phase and

ẏ(t,p) + kdy(t,p) = 0

in the dissociation phase. From the latter equation it is
immediately evident that the dissociation rate constant
kd is globally identifiable.

Now considering the association phase equation, if p is
generic and p denotes an indistinguishable parameter
vector, then the following relations must hold:

kaCT = kaCT , R = R, and kd = kd.

Therefore the parameters kd and R are globally identi-
fiable, but the parameters ka and CT are unidentifiable
(and hence the model is SU). An important consequence
of this result is that the binding affinity A = kd/ka
is unidentifiable (i.e., not uniquely determined by the
model output). However, if the sample concentration,
CT , is known then CT = CT and so ka becomes globally
identifiable and the model is SGI.

Considering initial conditions for the output equations
does not provide any further relations between p and p.
Evenwithmultiple experiments taking place on the same
chip and combining results the model does not become
SGI, unless the sample concentration is known a priori.

For the heterogeneous mixture version of the Langmuir
model (4) (m = 2) there are 7 unknown parameters,

p = (ka1, ka2, kd1, kd2, CT1, CT2, R)T ,

for the single model output. For parameter vectors p and
p to give the same output it must be the case that (see

Appendix A.3)

R = R, kd1 = kd1, kd2 = kd2, CT1ka1 = CT1ka1,

and CT2ka2 = CT2ka2

or

R = R, kd1 = kd2, kd2 = kd1, CT1ka1 = CT2ka2,

and CT2ka2 = CT1ka1.

Therefore the parameter R is globally identifiable, kd1
and kd2 are locally identifiable, and the parameters CT1,
CT2, ka1 and ka2 are unidentifiable (but the combina-
tions CT1ka1 and CT2ka2 are locally identifiable). Hence
the model is SU. No further information is provided by
the initial conditions.

If the total sample concentration is known, so that in
addition it is known that CT1 + CT2 = CT1 + CT2, the
model remains structurally unidentifiable. However, if
the individual concentrations, CT1 and CT2 are known,
then the model is structurally locally identifiable. The
main implication of these findings is that the binding
affinities Ai = kdi/kai are also unidentifiable, unless
both concentrations, CT1 and CT2 are known.

For the heterogeneous analyte version of the Langmuir
model (7) (m = 2) there are 6 unknown parameters,

p = (ka1, ka2, kd1, kd2, CT , R)T ,

for the single model output. For parameter vectors p and
p to give the same output it must be the case that (see
Appendix A.4)

R = R, kd1 = kd1, kd2 = kd2, CT ka1 = CT ka1,

and CT ka2 = CT ka2,

or

R = R, kd1 = kd2, kd2 = kd1, CT ka1 = CT ka2,

and CT ka2 = CT ka1

Therefore parameter R is globally identifiable, kd1 and
kd2 are locally identifiable, and the parameters CT , ka1
and ka2 are unidentifiable (but the combinations CT ka1
and CT ka2 are locally identifiable). Hence the model is
SU.

If the sample concentration is known, so that in addition
it is known that CT = CT , the model becomes SLI. The
binding affinities Ai = kdi/kai are locally identifiable.

4.2 Langmuir with transport model

The same structural identifiability approach was applied
to the three forms of the Langmuir with transport model.
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For the homogeneous version of the Langmuir with mass
transport model (8) there are 6 unknown parameters
(ka, kd, CT , R, kM , and h). The parameters R and kd
are globally identifiable while the parameters CT , ka, h,
and kM are unidentifiable. Hence the model is SU.

If the sample concentration,CT , were not known a priori
then it would not be possible to uniquely determine it or
the binding affinity, A = kd/ka. However, if the sample
concentration is known a priori, so that CT = CT , then
all of the remaining rate constants are globally identifi-
able and the model becomes SGI.

For the heterogeneous mixture (m = 2) version of the
Langmuir with transport model (9) there are 9 unknown
parameters (kai, kdi, CTi, R, kM , and h for i = 1, 2).
The parameter R is globally identifiable, kd1 and kd2 are
locally identifiable and the remaining parameters, CT1,
CT2, ka1, ka2, h, and kM , are unidentifiable. Hence the
model is SU.

If the total sample concentration is known, so that in
addition it is known that CT1 + CT2 = CT1 + CT2,
the model becomes SLI, with R and kM being globally
identifiable and the remaining parameters being locally
(nonuniquely) identifiable. However, if the individual
concentrations, CT1 and CT2 are known, then the model
is SGI. Therefore, the binding affinities Ai = kdi/kai
are also unidentifiable, unless the total sample concen-
tration, CT1 +CT2 is known, when they become locally
identifiable.

For the heterogeneous analyte (m = 2) version of the
Langmuir with transport model (10) there are 8 un-
known parameters (kai, kdi, CT , R, kM , and h for i =
1, 2). The parameter R is globally identifiable, kd1 and
kd2 are locally identifiable and the remaining parame-
ters, CT , ka1, ka2, h, and kM , are unidentifiable. Hence
the model is SU.

If the sample concentration is known (CT = CT ) then
the model becomes SLI. The binding affinities are
unidentifiable if the sample concentration is not known
and locally identifiable if it is known.

4.3 ERC model

The same structural identifiability approach was also
applied to the three forms of the ERC model. For the
homogeneous form (11) there are 5 unknown parame-
ters (ka, kd, CT , R, and kM ). The parameters R and kd
are globally identifiable, but the individual parameters
CT , ka, and kM are all unidentifiable. Hence the model
is structurally unidentifiable and it is not possible to es-
timate the unknown concentration, CT , or the binding
affinity,A = kd/ka, reliably. If the sample concentration,
CT , is known a priori, then all of the rate constants are

globally identifiable and the model becomes structurally
globally identifiable.

For the heterogeneous mixture version of the ERC
model (12) there are 8 unknown parameters (kai, kdi,
CTi, R, and kM for i = 1, 2). The parameter R is glob-
ally identifiable, kd1 and kd2 are locally identifiable and
the remaining parameters, CT1, CT2, ka1, ka2, and kM ,
are unidentifiable. Hence the model is SU.

If the total sample concentration is known, so that in
addition it is known that CT1 + CT2 = CT1 + CT2,
the model becomes SLI, with R and kM being glob-
ally identifiable and the remaining parameters being lo-
cally (nonuniquely) identifiable. However, if the individ-
ual concentrations, CT1 and CT2 are known, then the
model is SGI. The main implication of these findings is
that the binding affinitiesAi = kdi/kai are also unidenti-
fiable, unless the total sample concentration, CT1+CT2

is known, when they become locally identifiable.

For the heterogeneous analyte version of the ERC
model (13) there are 7 unknown parameters (kai, kdi,
CT , R, and kM for i = 1, 2). The parameter R is glob-
ally identifiable, kd1 and kd2 are locally identifiable and
the remaining parameters, CT , ka1, ka2, and kM , are
unidentifiable. Hence the model is SU.

If the sample concentration is known (CT = CT ) the
model becomes SLI, with R and kM being globally
identifiable and the remaining parameters being lo-
cally (nonuniquely) identifiable. The binding affinities
Ai = kdi/kai are also unidentifiable, unless the sam-
ple concentration is known, when they become locally
identifiable.

4.4 Summary

A summary of the identifiability analysis results from the
previous sections is presented in Table 1. It is noticeable
from these results that the heterogeneous mixture ver-
sion of the standard Langmuir model is “more uniden-
tifiable” than the other candidate structures (more pre-
cisely, in the identifiability analysis there is a two di-
mensional manifold of solutions for p such that p ∼ p,
compared with one dimensional manifolds for the other
unidentifiable cases). It is also clear from the structural
identifiability analyses that it is necessary to be able
to determine the total sample concentration in order to
obtain identifiable models. When the total sample con-
centration is known then the associated binding affini-
ties are locally identifiable (uniquely in the homogeneous
case and nonuniquely in the heterogeneous cases), ex-
cept for the Langmuir model, but this just corresponds
to interchanging of the indices i = 1 and i = 2.
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Table 1
Summary of the structural identifiability of all models considered (SGI: structurally globally identifiable; SLI: structurally
locally identifiable; SU: structurally unidentifiable). In addition, the identifiability of the binding affinities is also shown (GI:
globally identifiable; LI: locally identifiable; U: unidentifiable).

Model CT unknown CT (only) known CT1, CT2 known

Langmuir (homogeneous analyte) SU (A:U) SGI (A:GI) -

Langmuir (mixed analyte) SU (Ai:U) SU (Ai:U) SLI (Ai:LI)

Langmuir (heterogeneous analyte) SU (Ai:U) SLI (Ai:LI) -

Transport (homogeneous analyte) SU (A:U) SGI (A:GI) -

Transport (mixed analyte) SU (Ai:U) SLI (Ai:LI) SGI (Ai:GI)

Transport (heterogeneous analyte) SU (Ai:U) SLI (Ai:LI) -

ERC (homogeneous analyte) SU (A:U) SGI (A:GI) -

ERC (mixed analyte) SU (Ai:U) SLI (Ai:LI) SGI (Ai:GI)

ERC (heterogeneous analyte) SU (Ai:U) SLI (Ai:LI) -

5 Conclusions

Three models typically used to estimate the kinetic rate
constants in binding reactions from SPR experiments
have been considered. The first model is the well mixed
case and consists of Langmuir binding kinetics. The sec-
ond model is a two-compartment system proposed by
Myszka et al. (1998) that includes mass transport ef-
fects in a Langmuir type reaction scheme. This model
gives rise to the third model, the effective rate constant
approximation, under a quasi-steady state assumption.
The third model has been previously shown to be a good
approximation to a full fluid dynamics model for low
Damköhler number (Edwards, 2001).

The Langmuir model has been shown to be structurally
unidentifiable unless the total sample concentration,
CT , is known, in which case the homogeneous form of
the model becomes structurally globally identifiable and
the heterogeneous analyte form becomes structurally
locally identifiable. However, the heterogeneous mix-
ture form of the model remains unidentifiable unless the
concentrations of the individual components of the an-
alyte are known, in which case the model only becomes
structurally locally identifiable. Thus if the analyte ex-
hibits heterogeneity then the binding affinities are at
best, when the sample concentration is known, locally
(nonuniquely) identifiable.

The full two-compartment transport model has been
shown to be structurally globally identifiable in the ho-
mogeneous case and structurally locally identifiable in
the heterogeneous cases provided the total sample con-
centration,CT , is known. Otherwise themodel is uniden-
tifiable, in which case certain parameters can not be
uniquely determined from the output (and hence ulti-
mately from sensorgrams). These unidentifiable param-
eters include the sample concentration and the associ-
ation rate constant meaning that only a concentration
corrected binding affinity, kd/(kaCT ), can be uniquely

determined. Similar results have been produced for the
effective rate constant approximation.

Myszka et al. (1998) report that for parameters rele-
vant to Biacore experiments the solution to the two-
compartment transport model is insensitive to the value
of h. It has been confirmed that the model is structurally
unidentifiable even with both association and dissocia-
tion phases considered and that h is one of the unidenti-
fiable parameters. Therefore, the output of the model to
be compared with experimental data is independent of
the value of h, provided the product hCT remains fixed
in the homogeneous and heterogeneous analyte cases,
and hCTi in the mixture case (with CTi interchange-
able). In particular, it is necessary to know the sample
concentration, CT , or one of the other unidentifiable pa-
rameters (h, ka, and kM ) for the unknown parameters
to be uniquely determined by the output. Therefore as-
signing an arbitrary value to h (as suggested by Myszka
et al. (1998)) makes the model artificially structurally
globally identifiable.

The results obtained in this paper now enable the in-
vestigation of antibody-antigen binding kinetics using
SPR and characterises the uniqueness of the estimates
for binding affinity when applying one of the key model
structures. This is the first time that a formal analysis
of the uniqueness of these estimates has been performed
for SPR experiments.
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sity, 1994. Number 448.

R. Hermann and A.J. Krener. Nonlinear controllability
and observability. IEEE Transactions on Automatic
Control, AC-22:728–740, 1977.

S.T. Glad. Differential algebraic modelling of nonlinear
systems. In MA Kaashoek, JH van Schuppen, and
ACM Ran, editors, Realization and Modelling in Sys-
tem Theory, Proceedings of the International Sympo-
sium MTNS-89, volume I, pages 97–105. Birkhäuser,
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A Structural identifiability analyses

Due to the computational complexities involved in per-
forming a structural identifiability analysis a symbolic
algebra system such as Maple (Waterloo Maple Inc)
or Mathematica (Wolfram Research) is an invaluable
tool. All analyses in this section were performed using
Maple (version 15.01) on a dual core (2 × 2.66 GHz)
Windows XP PC with 4 GB memory. Results were con-
firmed using Mathematica (version 8.01) by generat-
ing the Observable Normal Form of the model.

A.1 Generating output equation in Maple

Based on the Maple code proposed by Forsman (1991)
the following procedures are used to determine the out-
put equation for state space systems. The procedures
use short command names and so the following packages
are loaded:

with(LinearAlgebra): with(Groebner):

The following procedure, lieDer, determines the Lie
derivative of H along F:

lieDer := proc (H, F)
local N, V, vars;
N := nops(F);
vars := [seq(x[t], t = 1 .. N)]:
V:=map( (a, b) -> diff(b, a), vars, H):
DotProduct(Vector(F),Vector(V),conjugate=false)
end:
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while the next procedure, listLieDer, determines the
list of the first N Lie derivatives of H along F:

listLieDer := proc (H, F, N)
local L, i, tmp;
L := [y[0]-H];
tmp := H;
for i to N do
tmp := lieDer(tmp, F);
L := [op(L), y[i]-tmp]

od;
end:

The three approaches to determining the output equa-
tion using Gröbner Bases proposed by Forsman (1991)
are implemented by the following three procedures:

outptEqn1 := proc (F, H)
local N, L, vars;
N := nops(F);
L := listLieDer(H, F, N);
L := map(expand, L);
vars := [seq(x[t], t = 1 .. N), y[N]];
UnivariatePolynomial(y[N], L, vars)

end:
outptEqn2 := proc (F, H)
local N, G, L, vars;
N := nops(F);
L := listLieDer(H, F, N);
vars:=[seq(x[t],t=1..N),y[N-i]$i=0..N];
G := Basis(L, plex(op(vars)));
G[1]

end:
outptEqn3 := proc (F, H)
local N, G, L, vars;
N := nops(F);
L := listLieDer(H, F, N);
vars := [seq(x[t], t = 1 .. N), y[N]];
G := Basis(L, plex(op(vars)));
G[1]

end:

A.2 Langmuir (Homogeneous analyte)

The identifiability analysis is performed by first defining
the model and determining the output equation:

F := [ k[a]*C[T]*(R-x[1])-k[d]*x[1] ] :
H := alpha*x[1]:
out := outptEqn1( F , H );

In this case the first method proposed by Forsman (1991)
has been used (the other methods generate the same out-
put equation). Next the coefficients of the output equa-
tion are extracted, though note that the coefficient of
the highest derivative term should be 1 (for polynomial
examples):

p := collect(out,[y[0],y[1]],’distributed’):
uA := { coeffs(p,[y[0],y[1]]) };
outD := eval(out,C[T]=0):
p := collect(outD,[y[0],y[1]],’distributed’):
uD := { coeffs(p,[y[0],y[1]]) };
u := union( uA , uD );

The coefficients for a single interaction correspond to
those (uA) of the output equation in the association
phase (out) and those (uD) of the output equation in the
dissociation phase (outD), which is obtained by setting
CT = 0.

Now suppose that there exists an indistinguishable pa-
rameter vector with elements kb[d], kb[a], Cb[T], and
Rb. Since it is indistinguishable from the original param-
eter vector it must give rise to the same output equa-
tion, but with the coefficients in terms of the new vector.
However, these coefficients are unique for a given output
and this is used to determine the relations between the
elements of the two parameter vectors:

ub:=eval(u,
[k[d]=kb[d],k[a]=kb[a],C[T]=Cb[T],R=Rb]);

eqns := convert(u, list)-convert(ub, list);
solve(eqns, [kb[d], kb[a], Cb[T], Rb]);

Since this example is 1 dimensional and the initial con-
dition for the association phase does not correspond to
a steady state the results hold for the particular initial
condition of interest. The initial condition for the dis-
sociation phase is an unknown parameter and therefore
generic.

A.3 Langmuir (Heterogeneous mixture)

For the heterogeneous mixture version of the Langmuir
model (4) the model is written as follows:

F := [ k[a1]*C[T1]*(R-x[1]-x[2])-k[d1]*x[1],
k[a2]*C[T2]*(R-x[1]-x[2])-k[d2]*x[2] ] :

H := alpha*(x[1]+x[2]):
out := outptEqn2( F , H );

In this case the second method proposed by Forsman
(1991) has been used (the other methods generate the
same output equation). The output equation is second
order and given by

y2 + (kd1 + ka1CT1 + ka2CT2 + kd2) y1
+ (kd2ka1CT1 + kd1ka2CT2 + kd1kd2) y0

− α (kd1ka2CT2R+ kd2ka1CT1R) = 0

where y0 = y(t,p) and yi = y(i)(t,p). Since this is a poly-
nomial state space system it is algebraically observable
(and satisfies the ORC for generic initial conditions).
The identifiability analysis proceeds as in the previous
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section, except that, in this case, the output equation
in the dissociation phase is obtained by setting CTi = 0
(i = 1, 2).

Since the model consists of two distinct phases to ensure
the validity of the analysis for the particular experiments
of interest it must first be confirmed that the generators
of the idealLn do not change for the states corresponding
to particular initial conditions for the experiment. For
the association phase the initial conditions are given by

B1(ts) = B2(ts) = 0.

Since all dependencies between state variables have been
included in the system equations and the association
phase initial conditions do not belong to an invariant
submanifold let b10 and b20 denote the state variables at
time τ > ts:

B1(τ) = b10, and B2(τ) = b20.

Then the system can be regarded as starting from the
generic initial conditions b10 and b20, and so the generat-
ing equations do not change. For the dissociation phase
take τ = tf .

A.4 Langmuir (Heterogeneous analyte)

For the heterogeneous analyte version of the Langmuir
model (7) the output equation is second order and is
given by the following

y2 + (CT (ka1 + ka2) + kd1 + kd2) y1
+ (CT (kd1ka2 + kd2ka1) + kd1kd2) y0

− αCTR (kd1ka2 + kd2ka1) = 0

where y0 = y(t,p) and yi = y(i)(t,p). Since this is a poly-
nomial state space system it is algebraically observable
(and satisfies the ORC for generic initial conditions).
The identifiability analysis proceeds as in the previous
sections.

A.5 Langmuir with transport (homogeneous analyte)

For the Langmuir with transport model (8) the output
equation is second order and is given by the following

αh(y0 − αR)y2 + α(kM + 2kaR)y0y1 − kay
2
0y1

+ αkM (kd + kaCT )y
2
0 − α2R(kaR+ kdh+ kM )y1

−αhy21−α2kMR(2kaCT +kd)y0+α3kakMCTR
2 = 0

where y0 = y(t,p) and yi = y(i)(t,p). Since this is a poly-
nomial state space system it is algebraically observable
(and satisfies the ORC for generic initial conditions).

Notice that the coefficient of y(2)(t,p) is not 1 and so, in
order to perform the structural identifiability analysis,
the equation is divided by αh(y0−αR) (since y0 �= αR).
Then the equation α(y(2)(t,p) − y(2)(t,p)) is formed,
where p represents an indistinguishable parameter vec-
tor (to p), and expressed as a polynomial. The coeffi-
cients of this polynomial must be 0 (otherwise the out-
put satisfies an equation of order less than 2) and these
are solved to determine the required relations between
the elements of p and p.

A.6 Langmuir with transport (heterogeneous mixture)

The output equation generated in Maple for the het-
erogeneous analyte version of the Langmuir model (9)
is very large and the computation involved necessitates
the use of a computer algebra system. Since this output
equation is of fourth order and the system is polyno-
mial it is algebraically observable. Proceeding as in the
previous examples generates the set of the coefficients,
ck(p,p), that must be zero, which contains 387 elements,
even though there are only 9 parameters. Solving all co-
efficients simultaneously is a computationally intensive
task. However, if the first 25 coefficients are solved and
the solution applied to the remaining ones, then this is
the solution to all coefficients.

A.7 Langmuir with transport (heterogeneous analyte)

The output equation generated in Maple for the het-
erogeneous ligand version of the Langmuir model (10)
is also quite large and the computation proceeds as in
the previous examples, though the set of coefficients,
ck(p,p), that must be zero, contains 39 elements.

A.8 ERC approximation (homogeneous analyte)

The ERC model (11) is defined as follows:

F := [(k[a]*C[T]*(R-x[1])-k[d]*x[1])/
(1 + (k[a]/k[M])*(R-x[1])) ] :

H := alpha*x[1]:

Although this model consists of a single variable, and
thus the output equation is readily obtained, an analysis
is performed in Maple to illustrate the approach for a
rational system. In this case the numerators from the
list of Lie derivatives is used to define the ideal Ln

f , from
which the output equation is obtained:

LF1 := numer(listLieDer(H, F, 1)):
out := UnivariatePolynomial(y[1],

map(expand, LF1), [x[1], y[1]])

The output equation is given by:

(α (kM + kaR)− kay0) y1 + kMα (kaCT + kd) y0

− kMα2kaCTR = 0.
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It is seen from the Lie derivatives that the ORC is sat-
isfied for generic initial conditions and for the model-
specific B(t) = 0. Therefore the analysis proceeds as be-
fore.

A.9 ERC approximation (heterogeneous mixture)

The heterogeneousmixture version of the Langmuir with
transport model (12) gives rise to a second order differ-
ential equation for the output that is quite large and the
analysis proceeds as in previous examples.

A.10 ERC approximation (heterogeneous analyte)

The heterogeneous analyte version of the Langmuir with
transport model (13) gives rise to a second order differ-
ential equation for the output that is quite large and the
analysis proceeds as in previous examples.
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