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This work introduces a method for the construction of a reduced order model in the 

frequency domain. With input data obtained with the TAU linearized frequency domain 

solver applied to a wing, the reduced order model shows a strong ability to reconstruct the 

full order frequency response of the lift and pitching moment. Based on a 2D method, the 

wing is sliced in different strips ; a sensitivity analysis is carried out on each strip and on the 

total forces and moments to understand the influence of some parameters on the accuracy of 

the model . 

 

Nomenclature 

α = angle of attack 

α0 = amplitude of the pitching motion 

αm = mean angle of the pitching motion 

Cp = pressure coefficient 

CL = lift coefficient 

CD = Drag coefficient 

CM = Pitching moment coefficient 

Fz = Vertical force 

MY = Pitching moment 

k =   Reduced frequency 

U∞ =   Freestream velocity 

 

 

I. Introduction 

omputational Fluid Dynamics (CFD) now has a wide range of validity where it gives highly accurate results 

compared to wind tunnel experiments. It is extensively used in industry for steady analysis such as performance 

studies. However, unsteady aerodynamics also has to be used for aircraft design and aeroelastic applications such as 

flutter speed or limit cycle oscillation prediction. Whilst more powerful computers have enabled the application of 

CFD for unsteady loads calculations, in practice the computational cost remains too high for routine use, especially 

when it comes to viscous flows. 
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System identification builds a mathematical description of the dynamic behavior of a system from measured data. 

The model aims to provide an accurate prediction of the system response for a given input ( [1], [2], [3], [4] [5]). 

Whereas real systems are often costly to describe, models can capture their essential behaviour at reasonable cost. 

The modelling approach, so called inverse problem [6], consists of determining causes from knowing the effects. 

This is opposite to a direct problem. As same effects can have different causes, inverse problems may have different 

solutions. In contrast to direct problems, there is not a unique way of solving them; but a few methods are generally 

applicable. These inverse problems can be linear (system of equations or integral equation) or non-linear. 

Whilst models are useful and can be used to explain data, understand phenomena and predict behaviors; for many of 

them, a high number of degrees of freedom leads to extended calculation times. Reduced order models (ROMs) can 

be constructed that aim to decrease the CPU time by capturing the dominant behaviour of the numerical model with 

a few degrees of freedom, whilst retaining good accuracy and stability. These ROMs enable [7] the study of the 

system, and establishing control laws to be simplified. Model order reduction can be achieved using different 

methods; these depend on the physics of the system, the accuracy wanted and the information availability. The latest 

can be based on physical equations, engineering problems, datasets and so on. For systems whose model is strongly 

linked to the physics, order reduction can even be performed by hand, thinking about the independencies between 

the parameters; interpolation can also be used. 

 

While building a ROM, a first technique is to define projection bases and spaces. The idea is to use linear algebra 

and to construct a subspace orthogonal to the Krylov subspace; this can be performed thanks to the Gram-Schmidt 

orthonormalization method. Since it can be unstable [8] a modified Gram-Schmidt can be used. In order to achieve 

this, Arnoldi developed an iterative algorithm [9]. If the system matrix is hermitian, the Lanczos method [10] is 

much faster. It is based on the Arnoldi method, but as the system matrix is symmetric, the algorithm is much simpler 

and the recurrence is shorter: each vector 𝑈𝑗+1 is directly calculated from the two previous ones 𝑈𝑗 and 𝑈𝑗−1. The 

Lanczos algorithm can also be combined with a Padé approximation, for a method called Padé via Lanczos (PVL). 

This method aims to preserve of the stability of the system. In fact, the reduced order modeling techniques using the 

Padé approximation do not ensure this stability [11]. Other methods such as partial PVL [12] enable the poles and 

the zeros of the reduced transfer function to be corrected; it leads to an enhanced stability. Antoulas [13] uses the 

advantages of both Krylov subspaces and balanced truncation approaches. Finally, the Passive Reduced-order 

Interconnect Macromodelling Algorithm, while using the Arnoldi method guarantees the preservation of passivity 

and enables an enhanced accuracy [14].  

 

Another stream of scientific analysis uses the system response of different excitations to identify the reduced 

matrices. Based on Hankel singular values, several algorithms were developed for model reduction such as singular 

value decomposition (SVD). The idea is to eliminate the states requiring a large amount of energy to be reached, or 

a large amount of energy to be observed, as both correspond to small eigenvalues [15]. Grammians are introduced 

since they can be used to quantify these amounts of energy. The reachability grammian quantifies the energy needed 

to bring a state to a chosen value, whereas the observability grammian quantifies the energy provided by an 

observed state [16]. The value of these grammians obviously depends on the basis on which they are calculated. In 

the case of a stable system, a basis in the state space exists in which states that are difficult to reach are also difficult 

to observe. Normally, the Hankel singular values decrease rapidly. The balanced truncation aims at truncating the 

modes that are not reachable and observable. They correspond to the smallest Hankel singular values. The singular 

value decomposition is well-conditioned, stable and can always work, but can be expensive to compute. It solves 

high-dimensional Lyapunov equations [17] ; the storage required is of the order O(n²), while the number of 

operations is of the order O(n
3
). Many balancing methods exist, such as stochastic balancing, bounded real 

balancing, positive real balancing [18]. The frequency weighted balancing [19], can be useful if a good 

approximation is needed only in a specific frequency range. However, the reduced model is not necessarily stable if 

both input and output are weighted. These frequency weighted balancing methods have undertaken many 

improvements: the most recent one guarantees stability and yields to a simple error bound [20]. Based on Markov 

parameters, the Padé approximation (moment matching method) [21] has then been improved by Arnoldi and 

Lanczos [10] and is particularly recommended in the case of high dimension systems. 

 

The reduced order model developed in this paper falls into the second category of approach and is described in the 

following section. 
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II. Reduced order model 

 

For given flow conditions, the frequency response of the integrated aerodynamic coefficients obtained with a CFD 

code is directly related to the frequency of the pitching motion. It is therefore appropriate to build a reduced order 

model of the frequency response in the frequency domain instead of performing a classical reduction in the time 

domain. After solving the system and transforming back into the continuous space, it is possible to reconstruct any 

motion in the time domain. The conversion between continuous and discrete spaces (and vice versa) is achieved 

using a bilinear transform, as it is a bijective function from [0, π] to [0,∞]. The developed method gives accurate 

results when applied to a pitching airfoil in the transonic range, with no shock-induced separation. It uses the 

Eigensystem Realization Algorithm [25], based on the singular value decomposition to keep the dominant modes of 

the frequency response. The method proposed enables a model based on experimental data to be built without 

knowing the system matrices.  

 

As it needs equispaced input data in the discrete frequency domain, the choice of the sampling spacing is a key 

element. 

 

The equispaced discrete frequencies are defined by 

 

 ω̂𝑑(𝑘) =  
𝑘 𝜋

𝑁
, k ∈  [0 , N]   (1) 

 

The relationship to continuous frequencies as a result of the linking bilinear transformation is controlled by the 

sampling time parameter T via  

 

 ω(k) =  
2

𝑇
 tan

ω̂𝑑(𝑘)

2
 (2) 

 

T has to be chosen such that the continuous reduced frequencies are in the range of interest for the model input. In 

aerodynamics it corresponds to continuous reduced frequencies mostly in the interval [0.01,10]. 

 

A. Singular value decomposition 

 

To map the whole unit circle, the algorithm extends the domain of the input data to the interval [π,2π] using the 

conjugate of the impulse response coefficients Gd : 

 

 G𝑑(𝑘 + 𝑁) =  G𝑑
∗ (𝑁 − 𝑘) (3) 

 

A singular value decomposition [23] of the Hankel matrix defined using the 2N-points inverse discrete Fourier 

transform (IDFT) is performed. The model reduction is performed by keeping the largest singular values. 

B. Calculation of discrete reduced matrices 

A discrete-time linear and stable MIMO model of n-th order, with r-input and m-output can be described using the 

following state space representation 

 

 
𝒙(𝑘 + 1) = 𝐴𝑑𝒙(𝑘) + 𝐵𝑑𝒖(𝑘) 

𝒚(𝑘) = 𝐶𝑑𝒚(𝑘) + 𝐷𝑑𝒖(𝑘) 
(4) 

 

𝒙(𝑡) ∈ ℝn represents the vector of different degrees of freedom (called state vector in control theory). It contains for 

example the unknown physical variables, such as velocity, pressure, density. 𝒚(𝑡) ∈ ℝp and 𝒖(𝑡) ∈ ℝm respectively 

represent the vector of the outputs of interest of the system, and the vector of inputs. Another convenient notation is 

also used for a discrete-time model:  

 𝐺𝑑 ∶  (
𝐴𝑑 𝐵𝑑

𝐶𝑑 𝐷𝑑
) (5) 
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As far as a continuous-time is concerned, the matrices are written in this paper under the form  

 

 𝐺 ∶  (
𝐴 𝐵
𝐶 𝐷

) (6) 

 

The reduced matrices �̂�𝑟 and �̂�𝑟 are calculated [24].  G can be written as 

 

 𝐺�̂� = �̂�𝑑(𝑧𝐼 − �̂�𝑑)−1�̂�𝑑 + �̂�𝑑 , 𝑧 ∈ ℂ (7) 

 

The calculation of �̂�𝑟 and �̂�𝑟 is achieved by decomposing G in its real and imaginary parts. 

C. Bilinear transformation  

G can be transformed in a discrete-time system  

 

 �̂�𝑑(𝑧) = �̂�𝑑 + �̂�𝑑(𝑧𝐼 − �̂�𝑑)−1�̂�𝑑 (8) 

 

using the bilinear transformation [25]: 

 

 �̂� =  
2

𝑇
 (𝐼 + �̂�𝑑)−1 (�̂�𝑑 − 𝐼) (9) 

 �̂� =  
2

√𝑇
(𝐼 + �̂�𝑑) �̂�𝑑 (10) 

 �̂� =  
2

√𝑇
 �̂�𝑑 (𝐼 + �̂�𝑑)−1 (11) 

 �̂� =  �̂�𝑑 − �̂�𝑑 (𝐼 + �̂�𝑑)−1 �̂�𝑑  (12) 
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III. Test case introduction : FFAST wing 

 

A. Static results, FFAST wing 

 

As it gives promising results when applied to an airfoil ( [26]), this model is applied to a wing  in a pitching motion. 

The wing chosen is the one used for the FFAST project ( [27]), as it is a case of interest in the framework of ALPES 

(Aircraft Loads Prediction using Enhanced Simulation).  To be able to use CFD, a  mesh is created for inviscid 

simulations with TAU [28].  

 

 
Figure 1: Euler mesh, FFAST wing 

The freestreams conditions are : 

 

Mach =0.85 

Reference temperature = 216.65 K 

Reference density = 0.365 

αm = 2 degrees 

 

The solver uses central discretization, a scalar dissipation scheme, and the chosen relaxation solver is Runge Kutta. 

The convergence is reached for every calculation performed in the following part. 

The static lift and pitching moment show a linear trend as a function of the angle of attack (Figure 2) 

 

 
Figure 2: Static CL and CM vs α 
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To have a better of the aerodynamics on the wing, the Cp and the Mach number are plotted on the upper surface at  

αm = 2 degrees (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Static Cp and Mach number, αm = 2 degrees 

 

It displays at standard evolution for the Cp and Mach number, with the strongest shock reached around 70% chord. 

B. Unsteady aerodynamics 

 

The motion is sinusoidal and described by the following equation: 

 

 𝛼 =  𝛼𝑚 +  𝛼0 ∙ sin  (ω ∙ 𝑡 ) (13) 
 

where 𝛼𝑚 is the mean angle of attack, 𝛼0 the amplitude and ω the frequency of the motion. Let 𝑈∞ be the freestream 

velocity and c the airfoil chord, the reduced frequency is defined such as 

 

 𝑘 =  
ω ∙ c

𝑈∞

 (14) 

 

In addition to the classical unsteady Euler computations, as the amplitude of the motion is small and the motion 

periodic, it is possible to use the linearized frequency domain solver [29].  

 

C. Linearized frequency domain solver 

 

In addition to the classical Euler computation, as the amplitude of the motion is small and the motion periodic, it is 

possible to use the linearized frequency domain solver [27].  

An unsteady governing equation of the fluid motion discretized in space can be written 

 

 
𝑑𝒖

𝑑𝑡
+ 𝑅(𝒖, 𝒙, �̇�) = 0 (15) 
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where 𝑅 is the residual, written as a function of the flow solution u, the grid coordinates 𝑥 and the grid velocities �̇�. 

Under the assumption of a small amplitude of the unsteady perturbations, the RANS equation can be linearized 

around the steady state, i.e. it is seen as the superposition of the steady state mean and of the perturbation. 

 

 𝒖(𝑡) =  �̅� + �̃�(𝑡) , ‖�̃�‖ ≪  ‖�̅�‖ (16) 

 𝒙(𝑡) =  𝒙 + 𝒙(𝑡),           ‖𝒙‖ ≪  ‖𝒙‖ (17) 

 

and transformed in the frequency domain, since the perturbation is assumed to be periodic and can expressed as 

 

 �̃�𝑘(𝑡) = ∑ 𝑅𝑒(�̂�𝑘

 

𝑘

𝑒𝑗𝑘𝜔𝑡) (18) 

 

where �̂�𝑘 are the complex Fourier coefficients of the motion, 𝜔 the frequency, k the mode and j complex number 

such as  

 𝑗 = √−1 (19) 

 

After replacing the linearized values of u(t) and x(t) in (Error! Reference source not found.), the following system 

is obtained  

 

 𝐴𝒙 = 𝑏 𝑤ℎ𝑒𝑟𝑒 𝐴 = (

𝜕𝑅

𝜕𝑢
−𝜔𝐼

𝜔𝐼
𝜕𝑅

𝜕𝑢

) , 𝑏 = (

𝜕𝑅

𝜕𝑥
−𝜔

𝜕𝑅

𝜕�̇�

𝜔
𝜕𝑅

𝜕�̇�

𝜕𝑅

𝜕𝑥

) (
�̃�𝑅𝑒

�̃�𝐼𝑚
) (20) 

 

 

The Jacobian 𝜕𝑅/𝜕𝑢 is theoretically calculated in TAU, but the right hand term is evaluated by using central finite 

differences  

 

A comparison is made between the magnitude and phase of lift and moment obtained by the LFD solver and the one 

given by a standard time domain simulation. The harmonics of lift and moment are the main output of the LFD 

solver. In the case of the time domain simulation, the harmonics are calculated by TAU at the end of each period of 

the pitching motion. However, it is necessary to wait a few periods so that the values of the harmonics are 

converged. 

 

 
 

Figure 4: LFD vs time domain simulation, lift, FFAST wing 
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1 5 9 13 17 21 25

Strip number 

 
 

Figure 5: LFD vs time domain simulation, pitching moment, FFAST wing 

 

After having proved its efficiency to estimate the lift and the pitching moment in the case of a pitching airfoil, the 

linear frequency domain solver shows a good accuracy when estimating the loads on a wing (Figure 4-5), in a fast 

calculation time, compared to a time domain simulation.  

 

D. Slicing the surface mesh 

 

To effectively model the aerodynamic coefficients on the wing, the surface mesh is sliced in parts (Figure 6). 

 

 
 

 

 

 

Figure 6: Definition of the strip numbers 
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quadrilateral elements depending if they are contained  in this strip or at its boundary. It uses the TAU solution file 

to extract the pressure coefficient (and the friction coefficient if desired) for each element, with a clever approach for 

the elements on the boundary ; it can then easily calculate the total pressure and moment on each strip. In the case of 

the LFD solver, the outputs given by TAU on the the surface are Re(Cp) and Im(Cp), giving Re(FZ), Im(FZ), Re(MY) 

and Im(MY). FZ magnitude and phase can then be calculated, the same approach being valid for the pitching moment. 

 

 

 𝑎𝑏𝑠(𝐹𝑍) = √𝑅𝑒(𝐹𝑍)2 + 𝐼𝑚(𝐹𝑍)2 (21) 

   

 𝑎𝑟𝑔(𝐹𝑍) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐼𝑚(𝐹𝑍)

𝑅𝑒(𝐹𝑍)
) (22) 

 

LFD calculations are launched at different frequencies, and at each frequency, the script detailed above is used to 

give the real and imaginary parts of the aerodynamic coefficients. It enables to plot these coefficients against the 

wingspan at different frequencies. The arrow represents the increasing values of reduced frequency.  

 

  

  
 

Figure 7: Re(FZ), Im(FZ), Re(MY), Im(MY) vs wingspan 

 

Re(FZ)) shows the typical distribution of the vertical force on a wing, and both values of Re(FZ) and Im(FZ) decrease 

with the reduced frequency. As far as the moment is concerned, Re(MY) reaches a minimum around y=19, where 

Im(MY) reaches a maximum, which is due to the shock strength in this region (Figure 3). 
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As it has been specified before, the wing is sliced in 25 strips, Strip 1 being the strip close to the fuselage, and Strip 

25 the wingtip. The aim is to build a reduced order model for the lift and the pitching moment on each strips. First, 

for different strips (1, 5, 10, 15, 25) the magnitude and the phase of FZ is plotted as a function of the reduced 

frequency. It enables to have a better idea of the behavior of these two values depending on the position of the strips 

along the wing (Figure 8). 

 

 
 

Figure 8: abs(FZ), ang(FZ) vs reduced frequency, different strips 

Different trends are observed as far as the magnitude is concerned, especially for Strip 1 that shows one more 

inflexion point than the others. It may then be harder to build a reduced order model of Strip 1 than to build a ROM 

of Strip 25, for example. 

E. Building the reduced order models : process 

 

The reference set of data consists of 128 LFD calculations at different frequencies. Due to the choice of the method 

used to build the ROM, the mapping of these frequencies is driven by the spacing of the bilinear transform. As 

written in (2), the data has to be equispaced in discrete time.  

 

T has to be chosen such that the continuous reduced frequencies are in the range of interest of the model input. In 

aerodynamics it corresponds to continuous reduced frequencies mostly in the interval [0.01,10].  Three different 

values will be tried : T=0.005, T=0.02, and T=0.08. 

 

Moreover, the model can be used to reconstruct the frequency response Gr on a chosen number Nr of equispaced 

discrete frequencies corresponding to the same number of continuous frequencies. The reference set of inputs is built 

with 128 inputs, but it is interesting to see how the accuracy of the prediction changes when this number of input 

decreases. Models will be built with N=128, N=64, N=32 and N=16. 

 

The process is represented on Figure 9. 
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Figure 9: Description of the process 
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IV. Results 

A. Results strip by strip, influence of the  choice of T and N 

 

Three different spacings are chosen for the bilinear transform. Each value of T gives a different mapping of 

continuous frequencies against the discrete frequency (Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Choice of T for the sensitivity analysis 

 

T=0.08 contains more information on the low frequencies whereas T=0.005 contains more information on the high 

frequencies.  To calculate errors for a given value of N, the ROM outputs its prediction at each point where there is a 

LFD calculation used as the reference. The relative error between the prediction is then calculated (23).  

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|𝑅𝑒𝑓𝑒𝑟𝑒𝑟𝑒𝑛𝑐𝑒 𝐿𝐹𝐷 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑅𝑂𝑀|

𝑅𝑒𝑓𝑒𝑟𝑒𝑟𝑒𝑛𝑐𝑒 𝐿𝐹𝐷

∗ 100 (23) 

 

The first test case focuses on Strip 1, with r=9, and N=16 or N=32. As T has a direct impact on the mapping of the 

input with the reduced frequency, the relative error in vertical force magnitude is plotted against k (Figure 11).  

 

 
 

Figure 11: Relative error in FZ magnitude vs k, influence of T. Strip 1, r=9, N=16 
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Figure 12: Relative error in FZ magnitude vs k, influence of T. Strip 1, r=9 

As expected since as the inputs are mainly in the low frequencies (Figure 11-12), T=0.08 gives a good accuracy for 

low frequencies compared to the other values of T. However, the prediction is bad for high frequencies (for 1 < k < 

10) : the error in FZ magnitude reaches 10% in this frequency range, which is not satisfactory. As far as T=0.005 is 

concerned, this is the opposite ; small error for high frequencies, but high error for low frequencies. T=0.02 seems to 

be a good trade-off and seems to guarantee a good accuracy for the whole range of frequencies.  

 

To be able to have on overview of the trend of the errors depending on the ROM size, the mean absolute percentage 

error (MAPE) is calculated. For each ROM size, it actually represents the averaged sum of the relative errors at the 

128 reduced frequencies. 

 

 𝑀𝐴𝑃𝐸 =  
1

128
 ∑

|𝑅𝑒𝑓𝑒𝑟𝑒𝑟𝑒𝑛𝑐𝑒 𝐿𝐹𝐷 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑅𝑂𝑀|

𝑅𝑒𝑓𝑒𝑟𝑒𝑟𝑒𝑛𝑐𝑒 𝐿𝐹𝐷

∗ 100

𝑘=𝑘128

𝑘=𝑘1

  (24) 

 
Figure 13: Mean absolute percentage error vs ROM size on Strip 1, FZ magnitude 

For N=16, the MAP error given by T=0.005 does not go below 1% and the best result is obtained for T=0.02. When 

using 32 inputs, T=0.02 and T=0.08 give similar results. As a conclusion, focusing on Strip 1 enables to say that 

choosing T=0.005 does not provide a good accuracy. 

 

It is necessary to have a general look on the MAP error for all the strips. The number of inputs chosen is N=32. For 

each value of T, and for each strip, the mean absolute percentage error is plotted as a function of the ROM size. 

The strips can be identified thanks to a color gradient. From strip 1 to strip 25, the MAPE error value is represented 

from a dark to a light color (Figure 14). 
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Moreover, on each graph, the average MAPE is represented by a black line, enabling an easier analysis.  

 

 

 

 
Figure 14: MAPE vs ROM size, FZ magnitude, N=32 
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The error in FZ magnitude with T=0.005 tends to an average MAPE of 0.3% for r=15, whereas T=0.02 and T=0.08 

give an average MAPE of 0.1%. Nevertheless, in the case T=0.08, the error locally reaches 1% ; T=0.02 gives a 

much smoother plot, so this value will be kept for the following part. Finally, once the value of T has been set to 

0.02, a last comparison is done for the average MAPE against the ROM size, for different numbers of inputs (Figure 

15). 

 
Figure 15: Average MAPE vs ROM size, FZ magnitude, T=0.02 

When using 128 inputs, the average MAP error on all strips gets really low and reaches 10
-5

 %. A good trade-off is 

given for N=32, the error reaching 0.1% in average in this case. This sensitivity study has shown that choosing N=32 

and T=0.02 enables to build efficient and accurate ROMs. 

B. Total forces and moments on the wing 

 

Once that a ROM has been built for each slices, the total force on the wing is given by the sum of the forces on each 

slices. With N=32 and T=0.02, and for 0.01 < k < 1, the error of prediction of the total force on the wing is around 

1% for a ROM of size 3, 0.1% for r=9, and 0.0001% for r=15 (Figure 16).  

 

As far as high frequencies are concerned for r=15, the relative error does not exceed 0.1%. This increase in error is 

due to the low number of inputs in this range. However, a maximum error lower than 0.1% guarantees a very good 

accuracy. Increasing the size of the ROM does not increase the accuracy for r >15. It confirms what has been 

observed when checking the accuracy of the ROM strip by strip : for a given N and T, the best prediction is already 

obtained when r=15, which is a reasonable size.  

 

 
Figure 16: Relative error in total FZ magnitude vs ROM size, T=0.02, N=32 
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Figure 17: Total FZ magnitude and phase, with relative error vs ROM size, T=0.02, N=32 
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Figure 18: Total MY magnitude and phase, with relative error vs ROM size, T=0.02, N=32 
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Figures 17 and 18 respectively show the ability of the reduced order model to reconstruct the total vertical force and 

pitching moment on the wing, for one particular frequency (k=0.2). In each case, the reference magnitude and phase 

of FZ and MY  are represented,  and can be compared to the prediction given by ROMs of different sizes. Then, the 

relative error between the reference and the prediction is represented for each ROM size. The ROMs of size 3 are 

not accurate, particularly when reconstructing the phase of the aerodynamic coefficients. The error in this case is 

around 1%, with a peak close to 5% close to the wing root. As expected when seeing the errors given by the ROMs 

on each strip (Figure 16), ROMs of size 9 give a good prediction, with an error between 0.01 and 1% depending on 

the cases. 

But a much better prediction is achieved for r=15, with a relative error in each case lower than 10
-2 

%. Increasing the 

ROM size to 30 does not improve the accuracy of the model. 

 

V. Conclusions 

A reduced order model in the frequency domain has been built and shows a strong ability to reconstruct the 

frequency response. Applied to a wing, it enables to predict the loads at almost no computational cost. The wing has 

been sliced in different strips and based on the 2D methodology, reduced order models have been built for the lift 

and pitching moment for each strip. A sensitivity analysis has been carried out on the optimal choices for the 

number of inputs needed, the mapping of the continuous frequencies and the ROM size providing the best trade-off 

between accuracy and efficiency. On each strip or on the whole wing, small ROMs built with only 32 input points 

enable to reconstruct the frequency response with a maximal error of 0.1%. After having proved its capabilities on a 

invisicid wing, it is being tested on a viscous mesh.   
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