2,475 research outputs found

    Studying the nuclear mass composition of Ultra-High Energy Cosmic Rays with the Pierre Auger Observatory

    Get PDF
    The Fluorescence Detector of the Pierre Auger Observatory measures the atmospheric depth, XmaxX_{max}, where the longitudinal profile of the high energy air showers reaches its maximum. This is sensitive to the nuclear mass composition of the cosmic rays. Due to its hybrid design, the Pierre Auger Observatory also provides independent experimental observables obtained from the Surface Detector for the study of the nuclear mass composition. We present XmaxX_{max}-distributions and an update of the average and RMS values in different energy bins and compare them to the predictions for different nuclear masses of the primary particles and hadronic interaction models. We also present the results of the composition-sensitive parameters derived from the ground level component.Comment: Proceedings of the 12th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2011, Munich, German

    Lens Galaxy Properties of SBS1520+530: Insights from Keck Spectroscopy and AO Imaging

    Get PDF
    We report on an investigation of the SBS 1520+530 gravitational lens system and its environment using archival HST imaging, Keck spectroscopic data, and Keck adaptive-optics imaging. The AO imaging has allowed us to fix the lens galaxy properties with a high degree of precision when performing the lens modeling, and the data indicate that the lens has an elliptical morphology and perhaps a disk. The new spectroscopic data suggest that previous determinations of the lens redshift may be incorrect, and we report an updated, though inconclusive, value z_lens = 0.761. We have also spectroscopically confirmed the existence of several galaxy groups at approximately the redshift of the lens system. We create new models of the lens system that explicitly account for the environment of the lens, and we also include improved constraints on the lensing galaxy from our adaptive-optics imaging. Lens models created with these new data can be well-fit with a steeper than isothermal mass slope (alpha = 2.29, with the density proportional to r^-alpha) if H_0 is fixed at 72 km/s/Mpc; isothermal models require H_0 ~ 50 km/s/Mpc. The steepened profile may indicate that the lens is in a transient perturbed state caused by interactions with a nearby galaxy.Comment: 12 pages, 10 figures, submitted to Ap

    Global Production Increased by Spatial Heterogeneity in a Population Dynamics Model

    Get PDF
    Spatial and temporal heterogeneity are often described as important factors having a strong impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response of biotic interactions such as competition of predation. It may also modify intrinsic population properties such as growth rate. Most of the studies are theoretic since it is often difficult to manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which can explain why spatial heterogeneity may be a favorable factor for production.We consider a two patch model and a logistic growth is assumed on each patch. A general condition on the migration rates and the local subpopulation growth rates is provided under which the total carrying capacity is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this result is robust under stochastic perturbations

    Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503

    Get PDF
    Measuring the relative mass contributions of luminous and dark matter in spiral galaxies is important for understanding their formation and evolution. The combination of a galaxy rotation curve and strong lensing is a powerful way to break the disk-halo degeneracy that is inherent in each of the methods individually. We present an analysis of the 10-image radio spiral lens B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for the lens galaxy rotation curve and the source redshift. We construct a three-dimensionally axisymmetric mass distribution with 3 components: an exponential profile for the disk, a point mass for the bulge, and an NFW profile for the halo. The mass model is simultaneously fitted to the kinematics and the lensing data. The NFW halo needs to be oblate with a flattening of a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests that baryons are effective at making the halos oblate near the center. The lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting that the disk is marginally submaximal. The stellar mass of the disk from our modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the cold gas contributes ~20% to the total disk mass. In comparison to the stellar masses estimated from stellar population synthesis models, the stellar initial mass function of Chabrier is preferred to that of Salpeter by a probability factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments, accepted for publication in Ap

    Real-time inversion of VLP source functions at Stromboli Volcano, Italy.

    Get PDF
    We present a comprehensive processing tool for the real-time analysis of the source mechanism of Very-Long-Period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green’s functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano

    SHARP - I. A high-resolution multi-band view of the infra-red Einstein ring of JVAS B1938+666

    Get PDF
    We present new mass models for the gravitational lens system B1938+666, using multi-wavelength data acquired from Keck adaptive optics (AO) and Hubble Space Telescope (HST) observations. These models are the first results from the Strong-lensing at High Angular Resolution Program (SHARP), a project designed to study known quadruple-image and Einstein ring lenses using high-resolution imaging, in order to probe their mass distributions in unprecedented detail. Here, we specifically highlight differences between AO- and HST-derived lens models, finding that -- at least when the lens and source galaxies are both bright and red, and the system has a high degree of circular symmetry -- AO-derived models place significantly tighter constraints on model parameters. Using this improved precision, we infer important physical properties about the B1938+666 system, including the mass density slope of the lensing galaxy (gamma = 2.045), the projected dark matter mass fraction within the Einstein radius (M_dark/M_lens = 0.55), and the total magnification factor of the source galaxy (~ 13). Additionally, we measure an upper-limit constraint on luminous substructure (M_V > 16.2), based on the non-detection of bright satellite galaxies in all data sets. Finally, we utilize the improved image resolution of the AO data to reveal the presence of faint arcs outside of the primary Einstein ring. The positions and orientations of these arcs raise the intriguing possibility that B1938+666 has a second source galaxy, located at a more distant redshift. However, future work is needed to verify this hypothesis.Comment: 12 pages, 7 figures; Accepted for publication in MNRA

    Testing metallicity indicators at z~1.4 with the gravitationally lensed galaxy CASSOWARY 20

    Get PDF
    We present X-shooter observations of CASSOWARY 20 (CSWA 20), a star-forming (SFR ~6 Msol/yr) galaxy at z=1.433, magnified by a factor of 11.5 by the gravitational lensing produced by a massive foreground galaxy at z=0.741. We analysed the integrated physical properties of the HII regions of CSWA 20 using temperature- and density-sensitive emission lines. We find the abundance of oxygen to be ~1/7 of solar, while carbon is ~50 times less abundant than in the Sun. The unusually low C/O ratio may be an indication of a particularly rapid timescale of chemical enrichment. The wide wavelength coverage of X-shooter gives us access to five different methods for determining the metallicity of CSWA 20, three based on emission lines from HII regions and two on absorption features formed in the atmospheres of massive stars. All five estimates are in agreement, within the factor of ~2 uncertainty of each method. The interstellar medium of CSWA 20 only partially covers the star-forming region as viewed from our direction; in particular, absorption lines from neutrals and first ions are exceptionally weak. We find evidence for large-scale outflows of the interstellar medium (ISM) with speeds of up 750 km/s, similar to the values measured in other high-z galaxies sustaining much higher rates of star formation.Comment: 18 pages, 11 figures, accepted for publication in MNRA
    corecore