45 research outputs found
Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies
In previous work, empirical evidence indicated that a time-varying network
could propagate sufficient information to allow synchronization of the
sometimes coupled oscillators, despite an instantaneously disconnected
topology. We prove here that if the network of oscillators synchronizes for the
static time-average of the topology, then the network will synchronize with the
time-varying topology if the time-average is achieved sufficiently fast. Fast
switching, fast on the time-scale of the coupled oscillators, overcomes the
descychnronizing decoherence suggested by disconnected instantaneous networks.
This result agrees in spirit with that of where empirical evidence suggested
that a moving averaged graph Laplacian could be used in the master-stability
function analysis. A new fast switching stability criterion here-in gives
sufficiency of a fast-switching network leading to synchronization. Although
this sufficient condition appears to be very conservative, it provides new
insights about the requirements for synchronization when the network topology
is time-varying. In particular, it can be shown that networks of oscillators
can synchronize even if at every point in time the frozen-time network topology
is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD
Controversies in epilepsy: Debates held during the Fourth International Workshop on Seizure Prediction
Debates on six controversial topics were held during the Fourth International Workshop on Seizure Prediction (IWSP4) convened in Kansas City, KS, USA, July 4–7, 2009. The topics were (1) Ictogenesis: Focus versus Network? (2) Spikes and Seizures: Step-relatives or Siblings? (3) Ictogenesis: A Result of Hyposynchrony? (4) Can Focal Seizures Be Caused by Excessive Inhibition? (5) Do High-Frequency Oscillations Provide Relevant Independent Information? (6) Phase Synchronization: Is It Worthwhile as Measured? This article, written by the IWSP4 organizing committee and the debaters, summarizes the arguments presented during the debates
Response of electrically coupled spiking neurons: a cellular automaton approach
Experimental data suggest that some classes of spiking neurons in the first
layers of sensory systems are electrically coupled via gap junctions or
ephaptic interactions. When the electrical coupling is removed, the response
function (firing rate {\it vs.} stimulus intensity) of the uncoupled neurons
typically shows a decrease in dynamic range and sensitivity. In order to assess
the effect of electrical coupling in the sensory periphery, we calculate the
response to a Poisson stimulus of a chain of excitable neurons modeled by
-state Greenberg-Hastings cellular automata in two approximation levels. The
single-site mean field approximation is shown to give poor results, failing to
predict the absorbing state of the lattice, while the results for the pair
approximation are in good agreement with computer simulations in the whole
stimulus range. In particular, the dynamic range is substantially enlarged due
to the propagation of excitable waves, which suggests a functional role for
lateral electrical coupling. For probabilistic spike propagation the Hill
exponent of the response function is , while for deterministic spike
propagation we obtain , which is close to the experimental values
of the psychophysical Stevens exponents for odor and light intensities. Our
calculations are in qualitative agreement with experimental response functions
of ganglion cells in the mammalian retina.Comment: 11 pages, 8 figures, to appear in the Phys. Rev.
Network inference - with confidence - from multivariate time series
Networks - collections of interacting elements or nodes - abound in the
natural and manmade worlds. For many networks, complex spatiotemporal dynamics
stem from patterns of physical interactions unknown to us. To infer these
interactions, it is common to include edges between those nodes whose time
series exhibit sufficient functional connectivity, typically defined as a
measure of coupling exceeding a pre-determined threshold. However, when
uncertainty exists in the original network measurements, uncertainty in the
inferred network is likely, and hence a statistical propagation-of-error is
needed. In this manuscript, we describe a principled and systematic procedure
for the inference of functional connectivity networks from multivariate time
series data. Our procedure yields as output both the inferred network and a
quantification of uncertainty of the most fundamental interest: uncertainty in
the number of edges. To illustrate this approach, we apply our procedure to
simulated data and electrocorticogram data recorded from a human subject during
an epileptic seizure. We demonstrate that the procedure is accurate and robust
in both the determination of edges and the reporting of uncertainty associated
with that determination.Comment: 12 pages, 7 figures (low resolution), submitte
The response of a classical Hodgkin–Huxley neuron to an inhibitory input pulse
A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30–80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchronization by an inhibitory input pulse often fails for populations of classical Hodgkin–Huxley neurons. Our reasoning suggests that in general, synchronization by inhibitory input pulses can fail when the transition of the target neurons from rest to spiking involves a Hopf bifurcation, especially when inhibition is shunting, not hyperpolarizing. Surprisingly, synchronization is more likely to fail when the inhibitory pulse is stronger or longer-lasting. These findings have potential implications for the question which neurons participate in brain rhythms, in particular in gamma oscillations
Emergent Functional Properties of Neuronal Networks with Controlled Topology
The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity
Short Conduction Delays Cause Inhibition Rather than Excitation to Favor Synchrony in Hybrid Neuronal Networks of the Entorhinal Cortex
How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling, inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability, and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring synchronization at a given frequency, and also predict robustness to noise and heterogeneity
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017
This work was produced as part of the activities of FAPESP Research,\ud
Disseminations and Innovation Center for Neuromathematics (grant\ud
2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud
FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud
supported by a CNPq fellowship (grant 306251/2014-0)
Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson's disease.
In this paper, we present a novel Bayesian adaptive dual controller (ADC) for autonomously programming deep brain stimulation devices. We evaluated the Bayesian ADC's performance in the context of reducing beta power in a computational model of Parkinson's disease, in which it was tasked with finding the set of stimulation parameters which optimally reduced beta power as fast as possible. Here, the Bayesian ADC has dual goals: (a) to minimize beta power by exploiting the best parameters found so far, and (b) to explore the space to find better parameters, thus allowing for better control in the future. The Bayesian ADC is composed of two parts: an inner parameterized feedback stimulator and an outer parameter adjustment loop. The inner loop operates on a short time scale, delivering stimulus based upon the phase and power of the beta oscillation. The outer loop operates on a long time scale, observing the effects of the stimulation parameters and using Bayesian optimization to intelligently select new parameters to minimize the beta power. We show that the Bayesian ADC can efficiently optimize stimulation parameters, and is superior to other optimization algorithms. The Bayesian ADC provides a robust and general framework for tuning stimulation parameters, can be adapted to use any feedback signal, and is applicable across diseases and stimulator designs