80 research outputs found

    Block-Centric Visualization Of Histological Whole Slide Images With Application To Revealing Growth-Patterns Of Early Colorectal Adenomas And Aberrant Crypt Foci

    Get PDF
    Introduction/ Background Comfortable navigation through diagnostic images is a prospective challenge for the acceptance of virtual microscopy applications in routine pathology [1],[2]. Tracing different regions of interest through multiple sections on one or several slides is a typical task in diagnostic slide examination. This laborious and time-consuming co-localization is currently executed by pathologists. Retaining the relative positions of tissue structures while alternating between multiple slides is still not feasible in a satisfactory manner in conventional nor virtual microscopy. Aims To address this issue we present a more comfortable and intuitive method to read slides using computer-assisted navigation. Furthermore, we demonstrate the strengths of our method by applying it to large series of serial colorectal tissue sections, creating new kinds of visualizations of different adenomatous mucosal architectures in human tissue, while looking for human correlates of lesions recently described in mice [3]. Methods Histological images contain multiple distortions from different sources in the laboratory and digitalization process. An interconnection model was created to describe distortions by several layers, providing a normalized tissue representation. Layers were associated with specific distortions with each layer serving as a new level of abstraction. The first layers enabled a coarse alignment of tissue sections. Further alignment is achieved by piecewise, multi-resolution, SIFT-based [4] correspondence extraction and refinement. Inside the convex hull of all fiducial points local affine transformations were applied whereas a global affine transformation was used on the outside. Animated stacks were generated for regions of interest using local rigid transformations to preserve exact morphological coherences. For subsequent creation of 3D models, the relevant histological objects within these images were annotated by pathologists, partly using computer assisted segmentation based on active contours [5]. These annotations were used subsequently to create simplified 3D models by applying VTK [6].  Results The presented methods provide an efficient means to retrieve correspondences and additional spatial information from serial sections of histological slides. They also show good applicability for specimen from different origin. Alignment methods can be applied to generate block-centric visualizations such as parallel and transparent viewing of multiple stains. Moreover, the generated stack videos and 3D models demonstrate the very good accuracy of section alignment even in large series. The visualizations enable pathologists and researchers to grasp the 3D structural relationships in the tissue at a glance, providing an excellent tool to communicate more complex histomorphological findings. Interestingly, we see two kinds of tubular adenomas, which could imply multiple ways to tubular adenoma formation in FAP-patients, possibly akin to the recent observations in mice [3]

    A forest typology for monitoring sustainable forest management: The case of European Forest Types

    Get PDF
    Sustainable forest management (SFM) is presently widely accepted as the overriding objective for forest policy and practice. Regional processes are in progress all over the world to develop and implement criteria and indicators of SFM. In continental Europe, a set of 35 Pan-European indicators has been endorsed under the Ministerial Conference on the Protection of Forests in Europe (MCPFE) to measure progress towards SFM in the 44 countries of the region. The formulation of seven indicators (forest area, growing stock, age structure/diameter distribution, deadwood, tree species composition, damaging agents, naturalness) requires national data to be reported by forest types. Within the vast European forest area the values taken by these indicators show a considerable range of variation, due to variable natural conditions and anthropogenic influences. Given this variability, it is very difficult to grasp the meaning of these indicators when taken out of their ecological background. The paper discusses the concepts behind, and the requirements of, a classification more soundly ecologically framed and suitable for MCPFE reporting than the three (un-informative) classes adopted so far: broadleaved forest, coniferous forest, mixed broadleaved and coniferous forest. We propose a European Forest Types scheme structured into a reasonably higher number of classes, that would improve the specificity of the indicators reported under the MCPFE process and its understanding.L'articolo è disponibile sul sito dell'editore www.tandf.co.uk/journals

    Condensed Matter Theory of Dipolar Quantum Gases

    Full text link
    Recent experimental breakthroughs in trapping, cooling and controlling ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the way toward the investigation of highly tunable quantum systems, where anisotropic, long-range dipolar interactions play a prominent role at the many-body level. In this article we review recent theoretical studies concerning the physics of such systems. Starting from a general discussion on interaction design techniques and microscopic Hamiltonians, we provide a summary of recent work focused on many-body properties of dipolar systems, including: weakly interacting Bose gases, weakly interacting Fermi gases, multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D and quasi-1D geometries. Within each of these topics, purely dipolar effects and connections with experimental realizations are emphasized.Comment: Review article; submitted 09/06/2011. 158 pages, 52 figures. This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Chemical Reviews, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soo

    Variability and connectivity of plaice populations from the Eastern North Sea to the Western Baltic Sea, and implications for assessment and management

    Get PDF
    An essential prerequisite of sustainable fisheries is the match between biologically relevant processes and management action. Various populations may however co-occur on fishing grounds, although they might not belong to the same stock, leading to poor performance of stock assessment and management. Plaice in Kattegat and Skagerrak have traditionally been considered as one stock unit. Current understanding indicates that several plaice components may exist in the transition area between the North Sea and the Baltic Sea. A comprehensive review of all available biological knowledge on plaice in this area is performed, including published and unpublished literature together with the analyses of commercial and survey data and historical tagging data. The results suggest that plaice in Skagerrak is closely associated with plaice in the North Sea, although local populations are present in the area. Plaice in Kattegat, the Belts Sea and the Sound can be considered a stock unit, as is plaice in the Baltic Sea. The analyses revealed great heterogeneity in the dynamics and productivity of the various local components, and suggested for specific action to maintain biodiversity

    Secretory protein beta-lactoglobulin in cattle stable dust may contribute to the allergy-protective farm effect

    Get PDF
    15 Pág.Growing up on a cattle farm and consuming raw cow's milk protects against asthma and allergies. We expect a cattle-specific protein as active component in this farm effect.This study was supported by the Austrian Science Fund FWF (SFB F4606-B28 and MCCA W1248-B30 to EJJ), in part by Biomedical International R+D GmbH, Vienna, Austria, and by Bencard Allergie GmbH, Munich, Germany.Peer reviewe

    Induction and processing of the radiation-induced gamma-H2AX signal and Its link to the underlying pattern of DSB: A combined experimental and modelling study

    Get PDF
    We present here an analysis of DSB induction and processing after irradiation with X-rays in an extended dose range based on the use of the γH2AX assay. The study was performed by quantitative flow cytometry measurements, since the use of foci counting would result in reasonable accuracy only in a limited dose range of a few Gy. The experimental data are complemented by a theoretical analysis based on the GLOBLE model. In fact, original aim of the study was to test GLOBLE predictions against new experimental data, in order to contribute to the validation of the model. Specifically, the γH2AX signal kinetics has been investigated up to 24 h after exposure to increasing photon doses between 2 and 500 Gy. The prolonged persistence of the signal at high doses strongly suggests dose dependence in DSB processing after low LET irradiation. Importantly, in the framework of our modelling analysis, this is related to a gradually increased fraction of DSB clustering at the micrometre scale. The parallel study of γH2AX dose response curves shows the onset of a pronounced saturation in two cell lines at a dose of about 20 Gy. This dose is much lower than expected according to model predictions based on the values usually adopted for the DSB induction yield (≈ 30 DSB/Gy) and for the γH2AX foci extension of approximately 2 Mbp around the DSB. We show and discuss how theoretical predictions and experimental findings can be in principle reconciled by combining an increased DSB induction yield with the assumption of a larger genomic extension for the single phosphorylated regions. As an alternative approach, we also considered in our model the possibility of a 3D spreading-mechanism of the H2AX phosphorylation around the induced DSB, and applied it to the analysis of both the aspects considered. Our results are found to be supportive for the basic assumptions on which GLOBLE is built. Apart from giving new insights into the H2AX phosphorylation process, experiments performed at high doses are of relevance in the context of radiation therapy, where hypo-fractionated schemes become increasingly popular

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Life in the fast lane: Revisiting the fast growth—High survival paradigm during the early life stages of fishes

    Get PDF
    Early life survival is critical to successful replenishment of fish populations, and hypotheses developed under the Growth-Survival Paradigm (GSP) have guided investigations of controlling processes. The GSP postulates that recruitment depends on growth and mortality rates during early life stages, as well as their duration, after which the mortality declines substantially. The GSP predicts a shift in the frequency distribution of growth histories with age towards faster growth rates relative to the initial population because slow-growing individuals are subject to high mortality (via starvation and predation). However, mortality data compiled from 387 cases published in 153 studies (1971–2022) showed that the GSP was only supported in 56% of cases. Selection against slow growth occurred in two-thirds of field studies, leaving a non-negligible fraction of cases showing either an absence of or inverse growth-selective survival, suggesting the growth-survival relationship is more complex than currently considered within the GSP framework. Stochastic simulations allowed us to assess the influence of key intrinsic and extrinsic factors on the characteristics of surviving larvae and identify knowledge gaps on the drivers of variability in growth-selective survival. We suggest caution when interpreting patterns of growth selection because changes in variance and autocorrelation of individual growth rates among cohorts can invalidate fundamental GSP assumptions. We argue that breakthroughs in recruitment research require a comprehensive, population-specific characterization of the role of predation and intrinsic factors in driving variability in the distribution and autocorrelation of larval growth rates, and of the life stage corresponding to the endpoint of pre-recruited life. -- Keywords : critical period ; growth-mortality ; individual characteristics ; larval physiology ; predation ; recruitment endpoint
    corecore