39 research outputs found
Jacobi-like bar mode instability of relativistic rotating bodies
We perform some numerical study of the secular triaxial instability of
rigidly rotating homogeneous fluid bodies in general relativity. In the
Newtonian limit, this instability arises at the bifurcation point between the
Maclaurin and Jacobi sequences. It can be driven in astrophysical systems by
viscous dissipation. We locate the onset of instability along several constant
baryon mass sequences of uniformly rotating axisymmetric bodies for compaction
parameter . We find that general relativity weakens the Jacobi
like bar mode instability, but the stabilizing effect is not very strong.
According to our analysis the critical value of the ratio of the kinetic energy
to the absolute value of the gravitational potential energy for compaction parameter as high as 0.275 is only 30% higher than the
Newtonian value. The critical value of the eccentricity depends very weakly on
the degree of relativity and for is only 2% larger than the
Newtonian value at the onset for the secular bar mode instability. We compare
our numerical results with recent analytical investigations based on the
post-Newtonian expansion.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Dynamical stability of strange quark stars
We show that the mass-radius
relation corresponding to the MIT bag models of strange quark matter
(SQM) and the models obtained by Day et al (1998) do not provide the necessary
and sufficient condition for dynamical stability for the equilibrium
configurations, since such configurations can not even fulfill the necessary
condition of hydrostatic equilibrium provided by the exterior Schwarzschild
solution. These findings will remain unaltered and can be extended to any other
sequence of pure SQM. This study explicitly show that although the strange
quark matter might exist in the state of zero pressure and temperature, but the
models of pure strange quark `stars' can not exist in the state of hydrostatic
equilibrium on the basis of General Relativity Theory. This study can affect
the results which are claiming that various objects like - RX J1856.5-3754, SAX
J1808.4-3658, 4U 1728-34, PSR 0943+10 etc. might be strange stars.Comment: 7 pages (including 6 tables and 1 figure) in MNRAS styl
Last orbits of binary strange quark stars
We present the first relativistic calculations of the final phase of inspiral
of a binary system consisting of two stars built predominantely of strange
quark matter (strange quark stars). We study the precoalescing stage within the
Isenberg-Wilson-Mathews approximation of general relativity using a multidomain
spectral method. A hydrodynamical treatment is performed under the assumption
that the flow is either rigidly rotating or irrotational, taking into account
the finite density at the stellar surface -- a distinctive feature with respect
to the neutron star case. The gravitational-radiation driven evolution of the
binary system is approximated by a sequence of quasi-equilibrium configurations
at fixed baryon number and decreasing separation. We find that the innermost
stable circular orbit (ISCO) is given by an orbital instability both for
synchronized and irrotational systems. This constrasts with neutron stars for
which the ISCO is given by the mass-shedding limit in the irrotational case.
The gravitational wave frequency at the ISCO, which marks the end of the
inspiral phase, is found to be 1400 Hz for two irrotational 1.35 Msol strange
stars and for the MIT bag model of strange matter with massless quarks and a
bag constant B=60 MeV/fm^3. Detailed comparisons with binary neutrons star
models, as well as with third order Post-Newtonian point-mass binaries are
given.Comment: 11 pages, 10 figures, improved conclusion and figures, references
added, accepted for publication in Phys. Rev.
Stability of strange stars (SS) derived from a realistic equation of state
A realistic equation of state (EOS) leads to realistic strange stars (ReSS)
which are compact in the mass radius plot, close to the Schwarzchild limiting
line (Dey et al 1998). Many of the observed stars fit in with this kind of
compactness, irrespective of whether they are X-ray pulsars, bursters or soft
repeaters or even radio pulsars. We point out that a change in the
radius of a star can be small or large, when its mass is increasing and this
depends on the position of a particular star on the mass radius curve. We carry
out a stability analysis against radial oscillations and compare with the EOS
of other strange star (SS) models. We find that the ReSS is stable and an M-R
region can be identified to that effect.Comment: 16 pages including 5 figures. Accepted for publication in MPL
Are rotating strange quark stars good sources of gravitational waves?
We study the viscosity driven (Jacobi-like) bar mode instability of rapidly
rotating strange stars in general relativity. A triaxial, "bar shaped" compact
star could be an efficient source of continuous wave gravitational radiation in
the frequency range of the forthcoming interferometric detectors. We locate the
secular instability point along several constant baryon mass sequences of
uniformly rotating strange stars described by the MIT bag model. Contrary to
neutron stars, strange stars with T/|W| (the ratio of the rotational kinetic
energy to the absolute value of the gravitational potential energy) much lower
than the corresponding value for the mass-shed limit can be secularly unstable
to bar mode formation if shear viscosity is high enough to damp out any
deviation from uniform rotation. The instability develops for a broad range of
gravitational masses and rotational frequencies of strange quark stars. It
imposes strong constraints on the lower limit of the frequency at the innermost
stable circular orbit around rapidly rotating strange stars. The above results
are robust for all linear self-bound equations of state assuming the growth
time of the instability is faster than the damping timescale. We discuss
astrophysical scenarios where triaxial instabilities (r-mode and viscosity
driven instability) could be relevant in strange stars described by the
standard MIT bag model of normal quark matter. Taking into account actual
values of viscosities in strange quark matter and neglecting the magnetic field
we show that Jacobi-like instability cannot develop in any astrophysicaly
interesting temperature windows. The main result is that strange quark stars
described by the MIT bag model can be accelerated to very high frequency in Low
Mass X-ray binaries if the strange quark mass is ~ 200 MeV or higher.Comment: 15 pages, 10 figures, to appear in Astronomy and Astrophysic
Maximum mass of a cold compact star
We calculate the maximum mass of the class of compact stars described by
Vaidya-Tikekar \cite{VT01} model. The model permits a simple method of
systematically fixing bounds on the maximum possible mass of cold compact stars
with a given value of radius or central density or surface density. The
relevant equations of state are also determined. Although simple, the model is
capable of describing the general features of the recently observed very
compact stars. For the calculation, no prior knowledge of the equation of state
(EOS) is required. This is in contrast to the earlier calculations for maximum
mass which were done by choosing first the relevant EOSs and using those to
solve the TOV equation with appropriate boundary conditions. The bounds
obtained by us are comparable and, in some cases, more restrictive than the
earlier results.Comment: 18 pages including 4 *.eps figures. Submitted for publicatio
The eccentricity distribution of compact binaries
The current gravitational wave detectors have reached their operational
sensitivity and are nearing detection of compact object binaries. In the coming
years, we expect that the Advanced LIGO/VIRGO will start taking data. At the
same time, there are plans for third generation ground-based detectors such as
the Einstein Telescope, and space detectors such as DECIGO. We discuss the
eccentricity distribution of inspiral compact object binaries during they
inspiral phase. We analyze the expected distributions of eccentricities at
three frequencies that are characteristic of three future detectors: Advanced
LIGO/VIRGO (30 Hz), Einstein Telescope (3 Hz), and DECIGO (0.3 Hz). We use the
StarTrack binary population code to investigate the properties of the
population of compact binaries in formation. We evolve their orbits until the
point that they enter a given detector sensitivity window and analyze the
eccentricity distribution at that time. We find that the eccentricities of
BH-BH and BH-NS binaries are quite small when entering the Advanced LIGO/VIRGO
detector window for all considered models of binary evolution. Even in the case
of the DECIGO detector, the typical eccentricities of BH-BH binaries are below
10^{-4}, and the BH-NS eccentricities are smaller than 10^{-3}. Some fraction
of NS-NS binaries may have significant eccentricities. Within the range of
considered models, we found that a fraction of between 0.2% and 2% NS-NS
binaries will have an eccentricity above 0.01 for the Advanced LIGO/VIRGO
detectors. For the ET detector, this fraction is between 0.4% and 4%, and for
the DECIGO detector it lies between 2% and 27%.Comment: 8 pages, 5 figures, accepted by A&
Population synthesis of double neutron stars
Using the StarTrack binary population synthesis code we model the population
of double neutron stars in the Galaxy. We include a detailed treatment of the
spin evolution of each pulsar due to processes such as spin-down and spin-up
during accretion events as well as magnetic field decay. We also model the
spatial distribution of double neutron stars by including their natal kicks and
subsequent propagation in the Galactic gravitational potential. This synthetic
pulsar population is compared to the observed sample of double neutron stars
taking into account the selection effects of detection in the radio band, to
determine the most likely evolutionary parameters. With these parameters we
determine the properties of the double neutron star binaries detectable in
gravitational waves by the high frequency interferometers LIGO and VIRGO. In
particular, we discuss the distributions of chirp masses and mass ratios in
samples selected by their radio or gravitational wave emission.Comment: 21 pages, 6 figures, accepted for publication in MNRA
A class of relativistic stars with a linear equation of state
By assuming a particular mass function we find new exact solutions to the
Einstein field equations with an anisotropic matter distribution. The solutions
are shown to be relevant for the description of compact stars. A distinguishing
feature of this class of solutions is that they admit a linear equation of
state which can be applied to strange stars with quark matter.Comment: 5 pages, 3 figures, to appear in Mon. Not. R. Astron. So
Lower limits on the maximum orbital frequency around rotating strange stars
Observations of kHz quasi-periodic oscillations (QPOs) in the X-ray fluxes of
low-mass X-ray binaries (LMXBs) have been used in attempts to constrain the
external metric of the compact members of these binaries, as well as their
masses and the equation of state of matter at supranuclear denisties. We
compute the maximum orbital frequency of stable circular motion around
uniformly rotating strange stars described by the MIT bag model. The
calculations are performed for both normal and supramassive constant baryon
mass sequences of strange stars rotating at all possible rates. We find the
lower limits on the maximum orbital frequency and discuss them for a range of
masses and for all rotational frequencies allowed in the model considered. We
show that for slowly and moderately rotating strange stars the maximum value of
orbital frequency can be a good indicator of the mass of the compact object.
However, for rapidly rotating strange stars the same value of orbital frequency
in the innermost stable circular orbit is obtained for stars with masses
ranging from that of a planetoid to about three solar masses. At sufficiently
high rotation rates of the strange star, the rotational period alone constrains
the stellar mass to a surprisingly narrow range.Comment: 9 pages, 5 figures, accepted by A&