84 research outputs found

    Linear inequalities among graph invariants: Using GraPHedron to uncover optimal relationships

    Get PDF
    Optimality of a linear inequality in finitely many graph invariants is defined through a geometric approach. For a fixed number of graph vertices, consider all the tuples of values taken by the invariants on a selected class of graphs. Then form the polytope which is the convex hull of all these tuples. By definition, the optimal linear inequalities correspond to the facets of this polytope. They are finite in number, are logically independent, and generate precisely all the linear inequalities valid on the class of graphs. The computer system GraPHedron, developed by some of the authors, is able to produce experimental data about such inequalities for a "small" number of vertices. It greatly helps in conjecturing optimal linear inequalities, which are then hopefully proved for any number of vertices. Two examples are investigated here for the class of connected graphs. First, all the optimal linear inequalities for the stability number and the number of edges are obtained. To this aim, a problem of Ore (1962) related to the Turán Theorem (1941) is solved. Second, several optimal inequalities are established for three invariants: the maximum degree, the irregularity, and the diameter. © 2008 Wiley Periodicals, Inc

    In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules in mice

    Get PDF
    We describe a two-photon microscopy-based method to evaluate the in vivo systemic transport of compounds. This method comprises imaging of the intact liver, kidney and intestine, the main organs responsible for uptake and elimination of xenobiotics and endogenous molecules. The image quality of the acquired movies was sufficient to distinguish subcellular structures like organelles and vesicles. Quantification of the movement of fluorescent dextran and fluorescent cholic acid derivatives in different organs and their sub-compartments over time revealed significant dynamic differences. Calculated half-lives were similar in the capillaries of all investigated organs but differed in the specific sub-compartments, such as parenchymal cells and bile canaliculi of the liver, glomeruli, proximal and distal tubules of the kidney and lymph vessels (lacteals) of the small intestine. Moreover, tools to image immune cells, which can influence transport processes in inflamed tissues, are described. This powerful approach provides new possibilities for the analysis of compound transport in multiple organs and can support physiologically based pharmacokinetic modeling, in order to obtain more precise predictions at the whole body scale

    Chitosan Modification of Adenovirus to Modify Transfection Efficiency in Bovine Corneal Epithelial Cells

    Get PDF
    BACKGROUND: The purpose of this study is to modulate the transfection efficiency of adenovirus (Ad) on the cornea by the covalent attachment of chitosan on adenoviral capsids via a thioether linkage between chitosan modified with 2-iminothiolane and Ad cross-linked with N-[gamma-maleimidobutyryloxy]succinimide ester (GMBS). METHODOLOGY/PRINCIPAL FINDINGS: Modified Ad was obtained by reaction with the heterobifunctional crosslinking reagent, GMBS, producing maleimide-modified Ad (Ad-GMBS). Then, the chitosan-SH was conjugated to Ad-GMBS via a thioether bond at different ratios of Ad to GMBS to chitosan-SH. The sizes and zeta potentials of unmodified Ad and chitosan-modified Ads were measured, and the morphologies of the virus particles were observed under transmission electron microscope. Primary cultures of bovine corneal epithelial cells were transfected with Ads and chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Chitosan modification did not significantly change the particle size of Ad, but the surface charge of Ad increased significantly from -24.3 mV to nearly neutral. Furthermore, primary cultures of bovine corneal epithelial cells were transfected with Ad or chitosan-modified Ad in the absence or presence of anti-Ad antibodies. The transfection efficiency was attenuated gradually with increasing amounts of GMBS. However, incorporation of chitosan partly restored transfection activity and rendered the modified antibody resistant to antibody neutralization. CONCLUSIONS/SIGNIFICANCE: Chitosan can provide a platform for chemical modification of Ad, which offers potential for further in vivo applications

    Support-based Implementation of Bayesian Data Fusion for Spatial Enhancement : Applications to ASTER Thermal Images

    No full text
    In this letter, a general Bayesian data fusion (BDF) approach is proposed and applied to the spatial enhancement of ASTER thermal images. This method fuses information coming from the visible or near-infrared bands (15 x 15 m pixels) with the thermal infrared bands (90 x 90 m pixels) by explicitly accounting for the change of support. By relying on linear multivariate regression assumptions, differences of support size for input images can be explicitly accounted for. Due to the use of locally varying variances, it also avoids producing artifacts on the fused images. Based on a set of ASTER images over the region of Lausanne, Switzerland, the advantages of this support-based approach are assessed and compared to the downscaling cokriging approach recently proposed in the literature. Results show that improvements are substantial with respect to both visual and quantitative criteria. Although the method is illustrated here with a specific case study, it is versatile enough to be applied to the spatial enhancement problem in general. It thus opens new avenues in the context of remotely sensed images

    Bayesian data fusion applied to water table spatial mapping

    Full text link
    Water table elevations are usually sampled in space using piezometric measurements that are unfortunately expensive to obtain and are thus scarce over space. Most of the time, piezometric data are sparsely distributed over large areas, thus providing limited direct information about the level of the corresponding water table. As a consequence, there is a real need for approaches that are able at the same time to (1) provide spatial predictions at unsampled locations and (2) enable the user to account for all potentially available secondary information sources that are in some way related to water table elevations. In this paper, a recently developed Bayesian data fusion (BDF) framework is applied to the problem of water table spatial mapping. After a brief presentation of the underlying theory, specific assumptions are made and discussed to account for a digital elevation model and for the geometry of a corresponding river network. On the basis of a data set for the Dijle basin in the north part of Belgium, the suggested model is then implemented and results are compared to those of standard techniques such as ordinary kriging and cokriging. Respective accuracies and precisions of these estimators are finally evaluated using a ‘‘leave-one-out’’ cross-validation procedure. Although the BDF methodology was illustrated here for the integration of only two secondary information sources (namely, a digital elevation model and the geometry of a river network), the method can be applied for incorporating an arbitrary number of secondary information sources, thus opening new avenues for the important topic of data integration in a spatial mapping context
    corecore