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Optimality of a linear inequality in finitely many graph
invariants is defined through a geometric approach. For
a fixed number of graph vertices, consider all the tuples
of values taken by the invariants on a selected class
of graphs. Then form the polytope which is the con-
vex hull of all these tuples. By definition, the optimal
linear inequalities correspond to the facets of this poly-
tope. They are finite in number, are logically independent,
and generate precisely all the linear inequalities valid on
the class of graphs. The computer system GraPHedron,
developed by some of the authors, is able to produce
experimental data about such inequalities for a “small”
number of vertices. It greatly helps in conjecturing opti-
mal linear inequalities, which are then hopefully proved
for any number of vertices. Two examples are investi-
gated here for the class of connected graphs. First, all the
optimal linear inequalities for the stability number and the
number of edges are obtained. To this aim, a problem of
Ore (1962) related to the Turán Theorem (1941) is solved.
Second, several optimal inequalities are established for
three invariants: the maximum degree, the irregularity,
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1. INTRODUCTION

An important research stream in Graph Theory studies
relationships among graph invariants. Invariants are numeri-
cal indices which summarize the graph structure: their values
are preserved by isomorphisms. Relations among invariants
range from very easy (e.g., the sum of vertex degrees equals
twice the number of edges) to very deep and difficult (like
many results in extremal graph theory). During the last two
decades, several computer based systems have been devel-
oped in order to generate new relations among invariants.
Some of them even produced conjectures in an automated
way; see [39] for a survey emphasizing contributions to alge-
braic graph theory. Here is a brief sketch of the main existing
systems (among others):

• the GRAPH system by Cvetković et al. [18–23] interactively
computes invariants and includes also a theorem-proving
component;

• the INGRID system of Brigham and Dutton [8–11] imple-
ments manipulation of formulae involving graph invariants;

• the Graffiti system of Fajtlowicz et al. [25–31] generates
a priori conjectures and then eliminates those that are rejected
by a database of counter-examples or are not interesting;

• the AutoGraphiX system of Caporossi and Hansen [2,
12–15, 24, 32, 35, 36, 40, 41] generates extremal or near-
extremal graphs for some relations on graph invariants, then
derives conjectures either automatically or with the user’s
intervention.

Hansen [38] divides such computer systems into two
classes: automated systems which provide conjectures in a
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fully automated way (i.e., without human intervention apart
from the problem statement), and computer-assisted sys-
tems otherwise. The new system we have implemented is
a computer-assisted one.

The investigation of relations among graph invariants
should tackle the following two general questions: when is
a relation interesting? when is it optimal? Here, we derive
answers to these questions using a polyhedral approach in
which graphs are represented as points in a space of invari-
ants. This approach is quite natural but has not yet been
exploited in a systematic way. The system AutoGraphiX
of Caporossi and Hansen uses three different methods to
derive conjectures automatically. Among them is a “geomet-
ric approach” which consists of considering “extremal graphs
as points in a space of characteristics, then uses a convex-
hull (or gift-wrapping) algorithm to find facets, which corre-
spond to conjectures” ([15], p. 83). However, as Caporossi
and Hansen consider larger instances than we do here, they
explore only a selection of graphs which are extremal or
near-extremal for a given objective function and they only
study the facets relevant for the corresponding optimization
problem (minimization or maximization). On the contrary
we consider all nonisomorphic graphs of a selected class and
characterize all the facets of the convex hull. As we now
explain, the method always singles out a finite number of
optimal relations from which all other relations follow.

Given a fixed set of p invariants for graphs, linear inequal-
ities among these invariants are of particular interest. Follow-
ing our general approach, we consider all linear inequalities
which hold for graphs from a given class C (e.g., the class
of connected graphs with n vertices). Each graph G from the
class C is represented by some point in the p-dimensional
real space R

p: the point has coordinates equal to the values
taken by the p invariants for G. The convex hull of all the
resulting points (obtained when G varies in C) is the poly-
tope of graph invariants for the selected set of invariants and
the class C of graphs.1 Any linear inequality on R

p valid for
the polytope of graph invariants induces a linear relationship
among the invariants under investigation, which holds for
the class C. Furthermore, such an inequality can be consid-
ered as best possible exactly when it defines a facet of the
polytope. The reason is twofold: all other linear inequalities
among the invariants are logical consequences (more specif-
ically, are dominated by a positive combination) of the facet
defining inequalities, and no facet defining inequality can be
a logical consequence of other such inequalities. Besides,
these facet defining inequalities are finite in number; we will
refer to them as the optimal inequalities. Notice also that a
description by optimal inequalities of the polytope of graph
invariants can be of great help when a linear combination
of the invariants has to be maximized over the graphs in the
class C. We remark in passing that the above approach also
applies to nonlinear relationships among invariants: it suf-

1For ease of exposition, we assume that the polytope is full dimensional,
i.e., of dimension p.

fices to associate coordinates to, say, powers or products of
invariants.

The polyhedral interpretation of the linear inequalities
among the p selected graph invariants also suggests a fruitful
strategy to formulate conjectures. The first three stages can
be implemented on a computer. First, for n not too large, gen-
erate all the graphs on n vertices which belong to the class
C under study (the program geng [43] can be instrumental,
possibly supplemented with ad hoc routines). Second, com-
pute for each graph the values taken by the graph invariants.
Third, for any n in the admissible range, determine in R

p the
convex hull of the resulting p-dimensional points (running
for instance the software porta [16] or cdd [33]). Fourth,
interpret the facet defining inequalities which were obtained
for the various values of n. The strategy helps in conjectur-
ing linear inequalities among the selected invariants. There
remains to mathematically establish these relationships in full
generality for the class C. Two applications of the strategy are
provided in this paper.

The method can be used to verify whether known inequal-
ities among invariants are the best possible in a very strong
sense. On the contrary, it is common practice to show that
a given inequality among invariants is tight by exhibiting
an instance for which the relation holds with equality. This
argument shows only that the inequality defines a support-
ing hyperplane of the convex hull defined above. It does not
establish that the inequality defines a facet. This last prop-
erty, according to our approach, singles out the optimal linear
inequalities.

In the next section, we provide a brief description of
the computer system GraPHedron designed to support
our investigations (see Mélot [44] for technical details).
A web interface to the system is publicly available at
http://www.graphedron.net. One of the distinctive
features of GraPHedron is the automatic production of a
report summarizing information on the polytope of graph
invariants, such as the list of extreme points, the list of facets,
drawings of graphs (just one, or all) which produce any given
extreme point, etc.

Apart from a brief section containing general definitions,
the rest of the paper illustrates our approach with results
obtained in two cases for the class of connected graphs. First,
we completely treat a case of two invariants, namely the sta-
bility number and the number of edges. Our system produced
figures of the resulting polytope for the number of graph ver-
tices up to 11. We were then able to establish the complete
list of facet defining inequalities for all values of n. On the
way, we solve a problem raised by Ore [45] (see Problem 1
of Section 13.4) in relation to the Turán Theorem and thus
improve recent results of Harant and Schiermeyer [42]. The
problem asks for the least number of edges in a connected
graph on n vertices with stability number α. Turán [46] solved
a similar problem for general graphs by describing noncon-
nected optimal solutions. The system GraPHedron was
essential for us to solve Ore’s problem: we understood from
its outputs the variety of critical graphs that a proof should
take into account.
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A second case is meant to illustrate intricacies. Three
invariants are considered: the maximum degree, the diameter
and the irregularity. Although several optimal linear inequal-
ities are obtained, determining the complete list of all such
inequalities remains an open problem.

2. OUTLINE OF THE SYSTEM GraPHEDRON

The main steps in using the system GraPHedron are as
follows.

2.1. Problem Statement

The user selects a classC of graphs (e.g., connected graphs,
triangle-free graphs, trees, . . .) and a set of invariants (e.g.,
number of edges, diameter, maximum degree, . . .). Notice
that new invariants can easily be added to the system.

2.2. Data Generation

Using geng [43], the system generates all the nonisomor-
phic graphs in C with a fixed number of vertices n, and stores
them (to avoid re-generation of the same class in the future).
Of course, it generates the graphs only for “small” values of
n (the number of values of n can be increased if the class of
graphs is more restricted; see [44] for details). Then, for each
selected invariant, the system computes and stores its values
for all the graphs which were generated. Storing the values
is useful especially when the computations of the invariant
take a long time (actually, computing invariants is the most
time-consuming part of the whole process; for details, see
Mélot [44]).

2.3. Determination of Optimal Linear Inequalities
Between Invariants

For each n, all the different points, i.e., distinct tuples of
values of the invariants, are formed. Then, their convex hull
is computed as a list of the facets and a list of the extreme
points. Currently the programs cdd [33] or porta [16] can
be used as subroutines to compute the convex hull. However
there exist many software packages implementing different
convex hull algorithms (see [3] for a comparison of the most
prevalent algorithms and for computational experiments).

2.4. Interactive Visualization of the Results and
Derivation of Conjectures

Finally, the user has to study the inequalities. He may
interact with the system to see and/or print the graphs cor-
responding to a certain extreme point. In the case of two
invariants, the automatic report produced by the system con-
tains a drawing of the polygon of graph invariants. Optional
information can be required in the report, e.g., statistics about
an invariant’s values or representation of the distribution of
points in the polytopes.

3. NOTATION

Let G = (V , E) be a connected graph with vertex set V
and edge set E. As usual, the number of vertices of the graph
G is denoted by n and the number of edges by m. A set A
of vertices of G is stable if {v, w} /∈ E for all v, w ∈ A.
The maximum cardinality of a stable set of G is the stability
number α(G). We denote by dv the degree of the vertex v, that
is dv = |{w ∈ V : {v, w} ∈ E}|, and by �(G) the maximum
degree maxv∈V dv. The distance between two vertices v and
w is the length of a shortest path from v to w. The diameter
D(G) is the maximum distance between two vertices of G. A
diameter path in G is a path of length D(G). The irregularity
of G is ι(G) = ∑

{v,w}∈E |dv − dw|.
A star is a tree with one vertex adjacent to all other vertices.

Other classical graphs will also be used, such as the complete
graph Kn, the complete bipartite graph Ka,b, the path Ln, and
the cycle Cn. Additional graphs are introduced when needed.

A polytope is the convex hull convS of a finite set S of
points in R

d . For terminology about polytopes, we generally
follow Ziegler [47].

4. STABILITY NUMBER AND NUMBER OF EDGES

The general methodology outlined in Section 1 is applied
here to the case of two invariants, the stability number and
the number of edges. Fixing the number n of vertices, we
associate to any connected graph G = (V , E) on n vertices
the pair (α, m) where, as before, α = α(G) and m = |E|. Our
goal is to determine, for any n, all facet defining inequalities
for the convex polygon

Pn
α,m = conv{(α, m) ∈ Z

2 : there exists a connected

graph G = (V , E) with |V | = n, α(G) = α, |E| = m}.
The polygon Pn

α,m lies in the plane R
2 with coordinates xα

and xm. Figure 1 illustrates the case for n = 10.
Figure 1, together with similar figures for other values of n,

suggests grouping the facets of Pn
α,m in three families (in the

present case, the facets are one-dimensional). These families
respectively consist of: (i) one horizontal facet lying on the
line xm = n−1; (ii) facets to the right, forming a path from the
extreme point (n−1, n−1) to the extreme point

(
1,

(n
2

))
; (iii)

facets to the left, connecting the extreme point (� n+1
2 �, n−1)

to the extreme point
(
1,

(n
2

))
. Our analysis will treat these three

families one after the other, and establish in each case the
complete list of facets together with the corresponding facet
defining inequalities. To avoid trivialities, we will assume
n ≥ 4 in this section.

4.1. The Horizontal Facet

Since we consider only connected graphs on n vertices,
the minimum number of edges in such a graph equals n − 1,
a value which arises exactly for trees. The stability number
of such trees varies from � n+1

2 � (for a path on n vertices)
to n − 1 (for a star K1,n−1). These observations result in a

NETWORKS—2008—DOI 10.1002/net 289



FIG. 1. The polygon Pn
α,m for n = 10.

horizontal facet for Pn
α,m, with extreme points (� n+1

2 �, n − 1)

and (n−1, n−1). The corresponding facet defining inequality
is of course xm ≥ n − 1.

4.2. The Rightmost Facets

The following proposition concerns the second family of
facets.

Proposition 1. For k = 1, 2, . . . , n − 2, the inequality

kxα + xm ≤
(

n − k

2

)
+ kn (1)

defines a facet of Pn
α,m with extreme points

(
k,

(
n − k

2

)
+ k(n − k)

)
and

(
k + 1,

(
n − k

2

)
+ k(n − k − 1)

)
. (2)

All facets and extreme points of Pn
α,m to the right of some

point of Pn
α,m are of these types.

Thus the extreme points on the rightmost part of Pn
α,m form

the sequence
(

k,
(n−k

2

) + k(n − k)
)

for k = 1, 2, . . . , n − 1,

which starts at
(
1,

(n
2

))
and ends at (n − 1, n − 1).

Proof. We first establish that (1) is valid for each extreme
point of Pn

α,m. With α denoting the stability number of a graph
G = (V , E) for which |V | = n and |E| = m, this amounts to
proving

m ≤
(

n − k

2

)
+ k(n − α). (3)

We proceed by considering two cases.
(a) Case k ≤ α. In some stable set S of maximum size

in G, select any subset T of k vertices. The number of edges
disjoint from T is at most

(n−k
2

)
. Any other edge has exactly

one vertex in T ; its other vertex lies outside S. The number of
such edges is at most k(n−α). Summing up, we get inequality
(3).

(b) Case k > α. Select a set U of k vertices which contains
a maximum-size stable set S. Any edge is either (i) disjoint
from U, or (ii) formed by one vertex in S and the other one in
V \ S, or (iii) formed by one vertex in U\S and the other one
in V \ S. Thus the total number of edges is at most

(n−k
2

) +
α(n − α) + (k − α)(n − α), from which (3) follows.

We thus have proved that (1) holds for Pn
α,m.

Each of the two points given in (2) comes from at least
one connected graph, namely the graph having as edges all
those pairs of vertices not included in a fixed subset of k, resp.
k + 1, vertices. As is easily checked, these two points satisfy
(1) with equality, and the same holds for a second linear
inequality also valid for the polytope. Consequently, they are
the extreme points of a facet defined by (1). Moreover, there
cannot be any other facet because we have found extreme
points with abscissas increasing from 1 to n − 1 by steps of
1. ■

We point out that another proof of Proposition 1 exists,
in which the first step consists of characterizing the extreme
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points of Pn
α,m. This characterization can be established in

two steps: (i) determining the maximum number of edges in
a connected graph with a given number of vertices and given
stability number; (ii) showing that the resulting points in R

2

are convexly independent. The easy solution to (i) states that
the maximum number of edges equals (n −α)(n +α − 1)/2.
As this function of α is strictly concave, (ii) becomes trivial.
Inequality (1) can then be derived. This line of argument
produces also a nonlinear inequality attributed in [37] to
Tomescu:

α ≤
⌊

1

2
+

√
1

4
+ n(n − 1) − 2m

⌋
.

4.3. The Leftmost Facets

For the third and last family of facets, we will first infer
the corresponding extreme points by answering the following
question: what is the minimum number of edges in connected
graphs with a fixed number of vertices and a fixed stability
number? This question is listed as an open problem in Ore
[45]. A complete answer is contained in Proposition 3 below.
It constitutes the variant for connected graphs of a famous
result of Turán [46], which we now recall. For given integer
numbers n and α satisfying n ≥ α ≥ 1, the Turán graph
T(n, α) has n vertices and is the disjoint union of α cliques
with balanced sizes (i.e., sizes equal to � n

α
� or � n

α
�; the last

two expressions give the same value if and only if α divides
n). We let t(n, α) denote the number of edges in the Turán
graph T(n, α).

Proposition 2. [46]. Any graph on n vertices with stability
number α has at least t(n, α) edges. Moreover, this graph has
exactly t(n, α) edges if and only if it is (isomorphic to) the
Turán graph T(n, α).

Thus the only graph achieving the minimum number of
edges in Proposition 2 has α connected components. Of
course, by adding α − 1 carefully selected edges, we obtain
various connected graphs on n vertices with stability number
α. Notice that in the case where n = 2α + 1, odd cycles on
n vertices still provide other examples with the same values
of α and m. Despite their diversity (as illustrated by outputs
from GraPHedron), we are able to prove that all these con-
nected graphs have the minimum possible number of edges
for given n and α. The proof is more elaborate than the sim-
ple ones known for the Turán result (and presented, e.g., in
Bollobás [6]). Also, it covers more cases than the connected
one (which is obtained in Proposition 3 below for c = 1, see
Corollary 1).

Proposition 3. Any graph G on n vertices with stability
number α and with c connected components has at least
t(n, α) + α − c edges. The lower bound is tight in all cases.

For 1 ≤ c ≤ α ≤ n, let fc(n, α) be the minimum number
of edges for graphs satisfying the conditions in

Proposition 3.
To prove fc(n, α) = t(n, α) + α − c, we first establish two

lemmas (a third one comes later).

Lemma 1. Suppose n ≥ 2α. If f1(n, α) = t(n, α) + α − 1,
then for c = 1, 2, . . . , α, we have fc(n, α) = t(n, α) + α − c.

Proof (of Lemma 1). The assumption n ≥ 2α implies
that each maximal clique of the Turán graph T(n, α) has more
than one vertex. By adding α − c carefully selected edges to
T(n, α), we see

t(n, α) + α − c ≥ fc(n, α),

and similarly by adding c − 1 carefully selected edges to a
graph achieving fc(n, α),

fc(n, α) + c − 1 ≥ f1(n, α).

Thus

t(n, α) + α − c ≥ fc(n, α) ≥ f1(n, α) − (c − 1). (4)

By our assumption, the first and last expressions in (4) are
equal. The conclusion follows. ■

Lemma 2. For 1 ≤ β ≤ α ≤ n, we have

t(n, β) ≥ t(n, α) + α − β. (5)

Proof (of Lemma 2). We only need to consider the case
where α = β + 1. To transform T(n, β + 1) into T(n, β), we
pick a clique of size � n

β+1� in the first graph, delete its vertices
and add � n

β+1� vertices in all to the other cliques. Clearly,
the number of edges increases at each deletion/addition of a
single vertex. ■

Proof (of Proposition 3). By addingα−c selected edges
to T(n, α), we see that inequality fc(n, α) ≤ t(n, α) + α − c
holds. Hence, only the following inequality remains to be
proved:

fc(n, α) ≥ t(n, α) + α − c. (6)

Assume first n < 2α. Then t(n, α) = n − α because the
Turán graph then consists of 2α − n isolated vertices plus
n − α parallel edges. On the other hand, any graph on n
vertices which has c connected components has at least n− c
edges. This results in fc(n, α) ≥ n − c = t(n, α) + α − c,
which gives (6).

Assume now n ≥ 2α. By Lemma 1, we only need to
establish the result for G connected. It remains to be proved
that

f1(n, α) ≥ t(n, α) + α − 1. (7)

We proceed by recurrence on the number n of vertices. Let
S be a maximum stable set of G, and let b be the number of
connected components of G\S (thus b ≤ α). By Lemma 3
below, the number of edges in the cut δ(S) is at least n −α +
b − 1. On the other hand, V \S induces in G a graph with
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b components and stability number β satisfying β ≤ α <

n − α. By the induction assumption together with Lemma
1, the graph induced by V \S has at least fb(n − α, β) =
t(n − α, β) + β − b edges. Summing up, we get

m ≥ n − α + b − 1 + t(n − α, β) + β − b

and then by Lemma 2

m ≥ n − α + b − 1 + t(n − α, α) + α − β + β − b

= n − α + t(n − α, α) + α − 1

= t(n, α) + α − 1.

The last equality directly follows from the structure of Turán
graphs: the addition of a vertex to each of the α maximal
cliques of T(n − α, α) produces T(n, α). Inequality (7) is
thus proved.

The last assertion in Proposition 3 is correct in view
of the examples provided just before the statement of this
proposition. ■

Lemma 3. As in the proof of Proposition 3, let G = (V , E)

be a connected graph with n vertices, m edges and stability
number α. Take a maximum stable set S in G, and let C1,
C2, . . . , Cb be the b connected components of G\S. Then the
cut δ(S) satisfies

|δ(S)| ≥ n − α + b − 1.

Proof (of Lemma 3). For i = 1, 2, . . . , b, build a span-
ning tree in Ci. Then extend the union of these b (sub)trees
into a spanning tree T of G. Clearly, E(T)∩δ(S) is an acyclic
set of edges of G which covers S and at least one vertex in
each Ci (possibly several vertices in a given Ci). Denote by
G′ the graph (V , E(T) ∩ δ(S)) and let A1, A2, . . . , A� be the
connected components with more than one vertex of G′. For
j = 1, 2, . . . , �, denote by sj (resp. rj) the number of ver-
tices of Aj in S (resp. not in S). Thus, the subgraph of G′
induced by Aj is a tree with sj + rj vertices (see Fig. 2 for an
illustration).

For any fixed j, two vertices in Aj\S cannot belong to the
same Ci (otherwise there would be a cycle formed by edges
of the tree T ). We derive

�∑
j=1

(rj − 1) = b − 1 (8)

by repeatedly collapsing vertices as follows. Let Aj and Aj′

each have a vertex in the same Ci. Then by collapsing these
two vertices we collect Aj and Aj′ together while leaving the
left-hand side of (8) unchanged because (rj −1)+(rj′ −1) =
(rj + rj′ − 1) − 1. Once all such collapsings have been done,
the left-hand side of (8) contains only one term which equals
b − 1 (because exactly one vertex remains in each of the b
sets Ci).

We now establish a lower bound on the number pj of edges
of G connecting the rj vertices in Aj\S to any vertices of
S. By connectivity of Aj in the graph G′, we surely have
pj ≥ sj + rj − 1. Moreover Aj\S is stable in G (because as
shown before Aj\S cannot have two vertices in the same Ci),
so there must be at least rj vertices in the maximum stable
set S which are adjacent in G to at least one vertex in Aj\S.
Then pj ≥ (rj + sj − 1) + (rj − sj) = 2rj − 1.

Consider now any vertex u of G not covered by E(T) ∩
δ(S), thus u 
∈ S. As S ∪ {u} cannot be stable, there is some
edge connecting u to S.

Finally, any vertex outside S is either covered by E(T) ∩
δ(S) (and then, for some j, belongs to Aj) or is not covered
(and then is adjacent to some vertex in S). In addition, using
pj ≥ 2rj − 1 and (8), we get

|δ(S)| ≥

 �∑

j=1

(2rj − 1)


 +


n − α −

�∑
j=1

rj




= n − α +
�∑

j=1

(rj − 1) = n − α + b − 1.
■

The most important case in Proposition 3 occurs when
c = 1. In view of the following explicit form of the Turán
number (see, e.g., [5])

t(n, α) =
(⌈ n

α

⌉
− 1

)
·
(

n − α

2

⌈ n

α

⌉)
, (9)

we thus have proved the next result.

FIG. 2. An example of graph G for the proof of Lemma 3. The edges in E(T) are shown in bold lines.
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Corollary 1. The minimum number of edges for all con-
nected graphs on n vertices with stability number α equals(⌈ n

α

⌉
− 1

)
·
(

n − α

2

⌈ n

α

⌉)
+ α − 1. (10)

Corollary 1 improves the main result in [42], which con-
sists of a lower bound on the minimum number of edges.
After we submitted this work for publication, other proofs of
Corollary 1 were independently found by Gitler and Valencia
[34], and also by Bougard and Joret [7] who use Brooks’ The-
orem. The latter authors provide additional results, including
the variant of Corollary 1 for 2-connected graphs and a char-
acterization of minimum graphs for both the connected and
2-connected cases. Finding the minimum number of edges for
k-connected graphs when k ≥ 3 remains an open problem.

Coming back to the polytope Pn
α,m, we now determine its

leftmost extreme points and facets. We take advantage of the
following points of Pn

α,m delivered by Corollary 1:

pk = (k, t(n, k) + k − 1), for k = 1, 2, . . . ,

⌊
n + 1

2

⌋
.

(11)

A first step is to show that all of these points are boundary
points. Next, we determine which of them are extreme. The
facets then follow immediately (see Corollary 2 below).

Proposition 4. The extreme points of the leftmost part of
the boundary of Pn

α,m are exactly the points provided in (11)
for k in {2, 3, . . . , � n−1

2 �} satisfying⌈
n

k − 1

⌉

=

⌊
n

k + 1

⌋
+ 1, (12)

and also for k = 1 and k = � n+1
2 �.

Proof. Leaving aside the extreme points (1,
(n

2

)
) and

(� n+1
2 �, n − 1), we assume 1 < k < � n+1

2 � in the rest of
the proof. To establish that the point pk is on the boundary of
Pn

α,m, it suffices to show that the “Turán function” (for a fixed
value of n)

t(n, ) :

{
1, 2, . . . ,

⌊
n + 1

2

⌋}
→ R : x 
→ t(n, x) (13)

is the restriction of a convex function from [1, � n+1
2 �] to R

(notice that we may discard the term k−1 which appears in the
second coordinate of pk , because it does not alter convexity).
In turn, we need only prove for k = 2, 3, . . . , � n−1

2 �

t(n, k) ≤ 1

2
(t(n, k − 1) + t(n, k + 1)). (14)

Inequality (14) follows from the following three assertions
(again for k = 2, 3, . . . , � n−1

2 �): The line with equation

xm − t(n, k) = −
(⌊ n

k

⌋ + 1

2

)
(xα − k) (15)

1. goes through the point pk = (k, t(n, k)),
2. supports the point pk−1 = (k − 1, t(n, k − 1)), and
3. supports the point pk+1 = (k + 1, t(n, k + 1)).

The first assertion is clear. Setting s = � n
k �, we see that the

second one is equivalent to

t(n, k − 1) − t(n, k) ≥
(

s + 1

2

)
. (16)

We derive the latter inequality by checking how many new
edges are created when the Turán graph T(n, k) is transformed
into the similar graph T(n, k−1). As explained before Propo-
sition 2, the graph T(n, k) is a union of cliques with size equal
to s and possibly also s + 1. To transform it into T(n, k − 1),
we select a clique with size s and move its vertices one after
the other to other cliques. At the first step, we delete s − 1
edges in the clique, and gain at least s edges in the augmented
clique; in all, we gain at least one edge. For the second ver-
tex, we have a gain of at least 2 (because we lose s − 2 edges
this time), etc. Thus the total number of edges increases by
at least 1 + 2 + · · · + s, that is

(s+1
2

)
.

Now the third assertion about the line in (15) translates
into

t(n, k) − t(n, k + 1) ≤
(

s + 1

2

)
. (17)

The graph T(n, k + 1) is a union of k + 1 cliques, of size
say d and (possibly also) d + 1. To transform T(n, k + 1)

into T(n, k), we move all vertices of some clique of size d
to other cliques. As we can create cliques only of size s or
s+1 (because of the structure of T(n, k)), the number of edges
increases by at most s−(d −1) at the first move, then at most
s − (d − 2), etc.; at the last move, we gain at most s edges.
Hence the increase in the number of edges is bounded above
by 1

2 d(2s+1−d). For s fixed, this quantity is maximized for
d = s or d = s + 1. We conclude that Assertion 3 is correct.

Having thus shown that all points pk provided in (11) are
on the boundary of Pn

α,m, we notice next that all leftmost
extreme points of Pn

α,m must be among the pk’s (because two
successive points pk have their abscissas differing by 1). Also,
a point pk is not extreme if and only if the line in (15) goes also
through the points pk−1 and pk+1, which happens exactly if
both inequalities (16) and (17) are satisfied with equality. By
inspecting the arguments which led to these inequalities, it is
easily seen that both equalities occur if and only if the sizes
of the maximal cliques in T(n, k − 1), resp. T(n, k + 1), are
all also sizes of maximal cliques in T(n, k). This is equivalent
to saying that n/(k + 1) and n/(k − 1) lie in an interval with
endpoints equal to two consecutive integers. Finally, pk is not
extreme if and only if � n

k−1� = � n
k+1� + 1. ■

Example. For n = 24, the values of k which do not provide
an extreme point are 7 and then 9, 10, 11. In particular, all
points p9, p10 and p11 lie on the segment joining the extreme
points p8 and p12.
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TABLE 1. The optimal linear inequalities in α and m for connected graphs.

m ≥ n − 1
kα + m ≤ (n−k

2

) + kn for k = 1, 2, . . . , n − 2
m − t(n, k) − (k − 1) ≥ for k = 2, 3, . . . , � n+1

2 � with
(t(n, k) − t(n, k − 1) + 1)(α − k) � n

k−1 � 
= � n
k+1 � + 1

Corollary 2. The leftmost facets of Pn
α,m are defined by the

following inequalities:

xm − t(n, k) − (k − 1) ≥ (t(n, k) − t(n, k − 1) + 1)(xα − k)

for values k = 2, 3, . . . , � n+1
2 � satisfying � n

k−1� 
= � n
k+1�+1.

We have completed our analysis of the case with the two
invariants α and m. The full list of optimal linear inequali-
ties appears in Table 1. The polygon Pn

α,m has an interesting
property which is not shared by all similar polytopes con-
structed for other choices of invariants: Any point from Pn

α,m
which has integer coordinates is produced by some graph in
the class considered (here, the class of connected graphs on
n vertices).

5. MAXIMUM DEGREE, IRREGULARITY,
AND DIAMETER

Our methodology is now applied to the following three
invariants of a connected graph G : the maximum degree
�(G), the irregularity ι(G) and the diameter D(G).

Let us quickly provide a motivation for the irregularity. A
graph G is regular if all the degrees of its vertices are equal,
otherwise G is irregular. Clearly, it is of interest to design
a measure of how much a graph G is irregular. Among the
measures of irregularity proposed in the literature, the most
prevalent ones are: the Collatz-Sinogowitz index which is the
difference between the largest eigenvalue of the adjacency
matrix and the average degree [17]; the variance of degrees
[4]; and the irregularity ι(G) of Albertson [1], which we use
here. Note that all these indices are equal to zero if G is regu-
lar. Tight upper bounds in terms of n and m are given in [4] for
the Collatz-Sinogowitz index and the variance of degree. For
the most recent invariant ι(G) a tight upper bound in term of n
is given in [1]. Another bound in terms of n and m is given in
[41] when G is general and in [35] when G is a chemical tree,
i.e., a tree with a maximum degree equal to 4. However, to the
best of our knowledge, there are no other results concerning
the irregularity ι(G) of Albertson. Consequently, it is worth
studying this invariant in relation to other parameters than the
number of edges. We choose the maximum degree and the
diameter which express simple but different characteristics of
graphs.

The polytope of graph invariants is here

Pn
�,ι,D = conv{(�, ι, D) ∈ Z

3 : there exists a

connected graph G = (V , E) with |V | = n,

�(G) = �, ι(G) = ι and D(G) = D}. (18)

For any fixed n, the polytope Pn
�,ι,D lies in the 3-dimensional

space R
3 with coordinates x�, xι and xD. As shown in the next

proposition, it is full-dimensional. Consequently, the facets
of Pn

�,ι,D are its two-dimensional faces.

Proposition 5. Let Pn
�,ι,D be the polytope defined by (18).

If n ≥ 4, then dim(Pn
�,ι,D) = 3.

Proof. To exhibit four affinely independent points lying
in Pn

�,ι,D, consider the following graphs on n vertices: the
complete graph Kn, the cycle Cn, the star K1,n−1, and the
path Ln. The corresponding points in R

3 are shown below:

Kn : (n − 1, 0, 1),

Cn : (2, 0, �n/2�),
K1,n−1 : (n − 1, (n − 1)(n − 2), 2),

Ln : (2, 2, n − 1).

It can easily be seen that they are affinely independent. ■

The output produced by GraPHedron for n = 4,
5, . . . , 10 led us to conjecture that (under various assump-
tions) five families of linear inequalities are facet defining.
We proceed to give the corresponding proofs.

Proposition 6. If n ≥ 4, the inequality

x� ≤ n − 1 (19)

is facet defining for Pn
�,ι,D.

Proof. The validity of (19) for Pn
�,ι,D is obvious.

Because the origin does not belong to the affine plane H ≡
x� = n − 1, it is now sufficient to exhibit three linearly inde-
pendent vectors of Pn

�,ι,D belonging to H. Let us consider
the following three graphs: the complete graph Kn, the star
K1,n−1, and finally G3, a star augmented with one edge. The
corresponding vectors, namely

Kn : (n − 1, 0, 1),

K1,n−1 : (n − 1, (n − 1)(n − 2), 2),

G3 : (n − 1, n(n − 3), 2),

belong to H ∩ Pn
�,ι,D and are linearly independent. ■

Proposition 7. The inequality

x� + xD ≤ n + 1 (20)

is facet defining for Pn
�,ι,D when n ≥ 4.
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Proof. (i) We first prove that �(G) + D(G) ≤ n + 1
holds for any connected graph G on n. Take a diameter path
P of G, thus P is a shortest path v1, v2, . . . , vD(G)+1 (with
length D(G)). Let v∗ be a vertex having degree �(G) and let
N (v∗) be the closed neighborhood of v∗, i.e., N (v∗) = {v ∈
V : {v, v∗} ∈ E} ∪ {v∗}. From

|P| + |N (v∗)| − |P ∩ N (v∗)| ≤ n,

|P| = D(G) + 1, and |N (v∗)| = �(G) + 1, we derive

�(G) + D(G) + 2 − |P ∩ N (v∗)| ≤ n.

It remains to prove |P ∩ N (v∗)| ≤ 3.

1. Suppose P ∩ N (v∗) = ∅. Then |P ∩ N (v∗)| = 0 ≤ 3.
2. Suppose P ∩ N (v∗) 
= ∅ and v∗ /∈ P. Then |P ∩

N (v∗)| ≤ 3, otherwise P could not be a shortest path.
3. Suppose P ∩ N (v∗) 
= ∅ and v∗ = vk ∈ P. If 1 < k <

D(G) + 1, then P ∩ N (v∗) = {vk−1, v∗, vk+1} because
P is a shortest path, and so |P ∩ N (v∗)| = 3. If v∗ = v1

or v∗ = vD(G)+1, then |P ∩ N (v∗)| = 2.

(ii) Having proved that (20) is valid for Pn
�,ι,D, we now

show that it defines a facet. The path Ln, the star K1,n−1, and
the star augmented with one edge, denoted as G3 in the proof
of Proposition 6, produce the vectors

(2, 2, n−1), (n−1, (n−1)(n−2), 2), (n−1, n(n−3), 2).
(21)

These three vectors satisfy (20) with equality and, when n ≥
4, they are linearly independent. ■

Let H = (V(H), E(H)) be a subgraph of G =
(V , E). We define the irregularity along H as ι(H) =∑

{k,l}∈E(H) |dk − dl| where the degree dk of the vertex k is rel-
ative to the graph G. To establish in Proposition 8 the validity
of our next inequality, we first improve inequality (20).

Lemma 4. Let G = (V , E) be a connected graph such that
ι(G) < �(G). Then �(G) + D(G) ≤ n.

Proof. We show for any connected graph G that �(G)+
D(G) > n implies ι(G) ≥ �(G). By (20), we may assume
�(G)+ D(G) = n + 1. From the proof of Proposition 7, any
vertex of maximum degree must be on some diameter path.
Let P = v1, v2, . . . , vD(G)+1 be a diameter path containing at
least one vertex of degree �(G).

By construction, the diameter path P contains D(G) + 1
vertices. Consequently, n − (D(G) + 1) = �(G) − 2 ver-
tices do not belong to P. We call them exterior vertices
(relatively to the diameter path P) and denote them by
w1, w2, . . . , w�(G)−2. The extremities v1 and vD(G)+1 of the
diameter path P are of degree at most �(G) − 1. So, let
v∗ = vk ∈ P\{v1, vD(G)+1} be the vertex of P with maximum
degree such that the subpath P1 ⊂ P which joins v1 to v∗ does
not contain any other vertex of maximum degree. There are

FIG. 3. All the exterior vertices are adjacent to the vertex v∗. In Case (a),
one has dv1 = 1, while in Case (b), one has 1 < dv1 ≤ � − 1.

�(G) edges incident to the vertex v∗ and two of them belong
to the diameter path P. Thus the �(G) − 2 remaining edges
are incident to the �(G) − 2 exterior vertices. We consider
two cases (see Fig. 3).

Case (a). Suppose dv1 = 1. By comparing the degrees
along P1, we obtain for the irregularity along P1

ι(P1) ≥ �(G) − 1.

Case (b). Suppose now dv1 = d > 1. (Note that the dis-
tance between v1 and v∗ cannot be greater than two; in other
terms, v∗ = v2 or v∗ = v3.) We have

ι(P1) ≥ �(G) − d.

All the vertices adjacent to v1, but one, are exterior vertices.
Let P2, P3, . . . , Pd be the paths defined by Pr = v1, wr−1, v∗
(after relabelling the exterior vertices if necessary). Because
the paths P1, P2, . . . , Pd have no common edge, it follows
that

d∑
r=1

ι(Pr) ≥ d(�(G) − d).

Moreover, 2 ≤ d ≤ �(G) − 1, which implies

d(�(G) − d) ≥ �(G) − 1.

This proves
d∑

r=1

ι(Pr) ≥ �(G) − 1.

Now in both Cases (a) and (b) let P0 be the subpath of P
joining v∗ to vD(G)+1. Clearly, the irregularity along P0 is at
least 1, and so

ι(G) ≥ �(G). ■
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Proposition 8. The inequality

nx� − xι + (n − 1)xD ≤ n2 − 1 (22)

is valid for Pn
�,ι,D. If n ≥ 5 and n is odd, the inequality is

facet defining.

Proof. (i) We first prove the validity of (22). For a graph
G = (V , E), this inequality can be rewritten as

�(G) + D(G) ≤ n + 1 + ι(G) − �(G)

n − 1
. (23)

If �(G) ≤ ι(G), inequality (23) is dominated by inequality
(20) and is thus valid. If �(G) > ι(G), then Lemma 4 gives
�(G)+D(G) ≤ n, which implies (23) because �(G) ≤ n−1.

(ii) We now prove that, for n ≥ 5 and n odd, inequality
(22) is facet defining. The following three graphs produce
vectors which are linearly independent and satisfy (22) with
equality: Kn, Ln, and the graph on n vertices such that one of
its vertices has degree n − 1 and the n − 1 other ones have
degree n − 2. Notice that this last graph only exists for n
odd. ■

On the contrary, as we will see at the end of this section,
inequality (22) is not facet defining when n is even. Before
considering two more inequalities, we establish two lemmas.

Lemma 5. Let G be a connected graph with n ≥ 4, D(G) ≥
3 and �(G) + D(G) = n + 1. Then ι(G) ≥ 2�(G) − 2.

Proof. We build upon the proof of Lemma 4. Let P = v1,
v2, . . . , vD(G)+1 be a diameter path containing some vertex v∗
of degree �(G). As in the proof of Lemma 4, we get v∗ ∈ {v2,
v3, . . . , vD(G)}. Let V ′ be the set of exterior vertices. Note that
an exterior vertex cannot be adjacent to both v1 and vD(G)+1,
because of our assumption D(G) ≥ 3. Thus, V ′ is the disjoint
union of the subset V1 of exterior vertices adjacent to v1, the
subset V2 of exterior vertices adjacent to vD(G)+1, and the
subset V ′′ of all remaining exterior vertices. Consider three
cases.

(a) Suppose V1 
= ∅ 
= V2. (This is possible only if
D(G) = 3 or 4 because �(G) + D(G) = n + 1 implies
that all exterior vertices are adjacent to v∗.) Consider the set
P1 of paths v1, t, v∗ with t ∈ V1, and the set P2 of paths
vD(G)+1, u, v∗ with u ∈ V2. The same argument as in the
proof of

Lemma 4.
shows that the total irregularity computed along the paths

from P1, or from P2, must be at least �(G) − 1. Because
V1 ∩ V2 = ∅, it is clear that no two paths in P1 ∪ P2 have a
common edge. Thus

ι(G) ≥ 2�(G) − 2.

(b) Suppose V1 
= ∅ and V2 = ∅ (the case where V1 = ∅

and V2 
= ∅ can be treated along the same line). This implies
dvD(G)+1 = 1. Similar to Case (a), the total irregularity along

paths v1, t, v∗ with t ∈ V1 is at least �(G) − 1. Furthermore,
the path Q = vD(G)+1, vD(G), . . . , v∗ has no common edge
with those paths and it satisfies ι(Q) ≥ �(G) − 1. Hence

ι(G) ≥ 2�(G) − 2.

(c) Suppose V1 = ∅ = V2. Then

ι(G) ≥ ι({v1, v2, . . . , v∗}) + ι({v∗, . . . , vD(G), vD(G)+1})
≥ 2�(G) − 2. ■

Lemma 6. Let G be a connected graph with n even, n ≥ 4,
D(G) = 2, and �(G) = n − 1. Then

ι(G) ≥ 2n − 4. (24)

Proof. Let k ≥ 1 be the number of vertices having
degree n − 1. The edges connecting the vertices of degree
n − 1 to vertices of smaller degree lead to

ι(G) ≥ k(n − k). (25)

If 2 ≤ k ≤ n−2, inequality (24) follows from inequality (25).
Because the graph cannot be complete, the case k = n − 1 is
impossible. We still have to consider the case where k = 1.

Suppose k = 1. Let v be the unique vertex of degree n − 1
and let � denote the number of vertices of degree n − 2. The
contribution to ι(G) of the edges connecting the vertex v to
the � vertices of degree n − 2 is �, and the contribution to
ι(G) of the edges connecting the vertex v to the n − � − 1
vertices of degree lower than n − 2 is at least 2(n − � − 1).
Finally, the edges connecting the � vertices of degree n − 2
to the n−�−1 vertices of degree lower than n−2 contribute
to ι(G) at least �(n − � − 2). Summing up, we obtain

ι(G) ≥ (� + 2)(n − � − 1).

If 0 ≤ � ≤ n − 3, inequality (24) follows from the above
inequality. Notice that � = n − 1 is impossible since n is
even. Thus the result for k = 1 and � = n − 2 remains to be
proved.

Suppose k = 1 and � = n − 2. Then, there exists a unique
vertex of degree d < n − 2 and

ι(G) ≥ (n − 2) + (n − 1 − d) + (d − 1)(n − 2 − d) (26)

= n − 2 + d(n − 2 − d) + 1. (27)

Because d(n − 2 − d) ≥ n − 3 for 1 ≤ d ≤ n − 3, the
expression above leads to inequality (24). ■

Proposition 9. The inequalities

2x� − xι + 2xD ≤ 2n (28)

and

2(n − 1)x� − xι + 2(n − 2)xD ≤ 2(n2 − n − 1) (29)

are facet defining for Pn
�,ι,D when n is even and n ≥ 4.
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FIG. 4. The boat on 8 vertices.

Proof. (i) The validity of inequality (28) can easily be
proved: we show 2�(G) − ι + 2D ≤ 2n for any connected
graph G. If G is regular, then (28) reduces to �(G)+D(G) ≤
n, which is always valid by Lemma 4. If G is not regular,
then ι(G) ≥ 2 and inequality (28) is dominated by 2�(G) +
2D(G) ≤ 2n + 2, which is true by Proposition 7.

The validity of (29) can be shown using similar arguments
as in the proof of Proposition 7. Indeed, for a connected graph
G, inequality (29) is equivalent to

�(G) + D(G) ≤ n + 1 + 2 + (ι(G) − 2�(G))

2(n − 2)
. (30)

Consider two cases:
(a) If �(G)+D(G) ≤ n, then (30) holds because �(G) ≤

n − 1 and ι ≥ 0 imply that the right-hand side is bounded
from below by n.

(b) Suppose �(G)+ D(G) = n + 1. Then the fact that the
right-hand side is bounded from below by n+1 follows from
Lemmas 5 and 6.

(ii) We now prove that the two inequalities in the statement
are facet defining. For (29), three linearly independent vectors
giving equality are provided by the graphs Kn, Ln and the
“boat” on n vertices, i.e., the graph consisting of the path
Ln−1 with an exterior vertex adjacent to its three consecutive
middle vertices (see Fig. 4). This last graph is well defined
for n ≥ 4 and n even.

For (28), replace the boat with the graph sketched in Figure
5. This graph is defined for n ≥ 6 and it has five vertices of
degree 3, one vertex of degree 1, and all other vertices of
degree 2. In case n = 4, use rather the complete graph minus
one edge. ■

Notice that the sum of inequalities (28) and (29) is equal to
twice (22). Consequently, the latter inequality does not define
a facet for n even.

In this section we have established some of the optimal
inequalities for the diameter, the irregularity and the maxi-
mum degree of a connected graph. Even if we are not able at
this time to provide a complete description of the polytope of
graph invariants, we have still shown that our method leads to
nontrivial and interesting results. The problem of finding all

FIG. 5. A graph used in the proof of Proposition 9.

optimal linear inequalities for the diameter, the irregularity
and the maximum degree is left open.
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