3,000 research outputs found

    Tomographic reconstruction of quantum states in N spatial dimensions

    Full text link
    Most quantum tomographic methods can only be used for one-dimensional problems. We show how to infer the quantum state of a non-relativistic N-dimensional harmonic oscillator system by simple inverse Radon transforms. The procedure is equally applicable to finding the joint quantum state of several distinguishable particles in different harmonic oscillator potentials. A requirement of the procedure is that the angular frequencies of the N harmonic potentials are incommensurable. We discuss what kind of information can be found if the requirement of incommensurability is not fulfilled and also under what conditions the state can be reconstructed from finite time measurements. As a further example of quantum state reconstruction in N dimensions we consider the two related cases of an N-dimensional free particle with periodic boundary conditions and a particle in an N-dimensional box, where we find a similar condition of incommensurability and finite recurrence time for the one-dimensional system.Comment: 8 pages, 1 figur

    Radial Structure in the TW Hya Circumstellar Disk

    Get PDF
    We present new near-infrared interferometric data from the CHARA array and the Keck Interferometer on the circumstellar disk of the young star, TW Hya, a proposed "transition disk." We use these data, as well as previously published, spatially resolved data at 10 μm and 7 mm, to constrain disk models based on a standard flared disk structure. We find that we can match the interferometry data sets and the overall spectral energy distribution with a three-component model, which combines elements at spatial scales proposed by previous studies: optically thin, emission nearest the star, an inner optically thick ring of emission at roughly 0.5 AU followed by an opacity gap and, finally, an outer optically thick disk starting at ~4 AU. The model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also a gap between the inner and outer optically thick disks. Our model is consistent with the suggestion by Calvet et al. of a planet with an orbital radius of a few AU. We discuss the implications of an opacity gap within the optically thick disk

    Full characterization of Gaussian bipartite entangled states by a single homodyne detector

    Full text link
    We present the full experimental reconstruction of Gaussian entangled states generated by a type--II optical parametric oscillator (OPO) below threshold. Our scheme provides the entire covariance matrix using a single homodyne detector and allows for the complete characterization of bipartite Gaussian states, including the evaluation of purity, entanglement and nonclassical photon correlations, without a priori assumptions on the state under investigation. Our results show that single homodyne schemes are convenient and robust setups for the full characterization of OPO signals and represent a tool for quantum technology based on continuous variable entanglement.Comment: 4 pages, 3 figures, slightly longer version of published PR

    On Alternative Supermatrix Reduction

    Full text link
    We consider a nonstandard odd reduction of supermatrices (as compared with the standard even one) which arises in connection with possible extension of manifold structure group reductions. The study was initiated by consideration of the generalized noninvertible superconformal-like transformations. The features of even- and odd-reduced supermatrices are investigated on a par. They can be unified into some kind of "sandwich" semigroups. Also we define a special module over even- and odd-reduced supermatrix sets, and the generalized Cayley-Hamilton theorem is proved for them. It is shown that the odd-reduced supermatrices represent semigroup bands and Rees matrix semigroups over a unit group.Comment: 22 pages, Standard LaTeX with AmS font

    First visual orbit for the prototypical colliding-wind binary WR 140

    Get PDF
    Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140(=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/- 0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with uncertainties times 6 smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.Comment: Complete OIFITS dataset included via Data Conservancy Projec

    Imaging the Algol Triple System in H Band with the CHARA Interferometer

    Full text link
    Algol (Beta Per) is an extensively studied hierarchical triple system whose inner pair is a prototype semi-detached binary with mass transfer occurring from the sub-giant secondary to the main-sequence primary. We present here the results of our Algol observations made between 2006 and 2010 at the CHARA interferometer with the Michigan Infrared Combiner in the H band. The use of four telescopes with long baselines allows us to achieve better than 0.5 mas resolution and to unambiguously resolve the three stars. The inner and outer orbital elements, as well as the angular sizes and mass ratios for the three components are determined independently from previous studies. We report a significantly improved orbit for the inner stellar pair with the consequence of a 15% change in the primary mass compared to previous studies. We also determine the mutual inclination of the orbits to be much closer to perpendicularity than previously established. State-of-the-art image reconstruction algorithms are used to image the full triple system. In particular an image sequence of 55 distinct phases of the inner pair orbit is reconstructed, clearly showing the Roche-lobe-filling secondary revolving around the primary, with several epochs corresponding to the primary and secondary eclipses

    Spectral and spatial imaging of the Be+sdO binary phi Persei

    Full text link
    The rapidly rotating Be star phi Persei was spun up by mass and angular momentum transfer from a now stripped-down, hot subdwarf companion. Here we present the first high angular resolution images of phi Persei made possible by new capabilities in longbaseline interferometry at near-IR and visible wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the CHARA Array. Additional MIRC-only observations were performed to track the orbital motion of the companion, and these were fit together with new and existing radial velocity measurements of both stars to derive the complete orbital elements and distance. The hot subdwarf companion is clearly detected in the near-IR data at each epoch of observation with a flux contribution of 1.5% in the H band, and restricted fits indicate that its flux contribution rises to 3.3% in the visible. A new binary orbital solution is determined by combining the astrometric and radial velocity measurements. The derived stellar masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf secondary, respectively. The inferred distance (186 +- 3 pc), kinematical properties, and evolutionary state are consistent with membership of phi Persei in the alpha Per cluster. From the cluster age we deduce significant constraints on the initial masses and evolutionary mass transfer processes that transformed the phi Persei binary system. The interferometric data place strong constraints on the Be disk elongation, orientation, and kinematics, and the disk angular momentum vector is coaligned with and has the same sense of rotation as the orbital angular momentum vector. The VEGA visible continuum data indicate an elongated shape for the Be star itself, due to the combined effects of rapid rotation, partial obscuration of the photosphere by the circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne

    CHARA/MIRC observations of two M supergiants in Perseus OB1: temperature, Bayesian modeling, and compressed sensing imaging

    Get PDF
    Two red supergiants of the Per OB1 association, RS Per and T Per, have been observed in H band using the MIRC instrument at the CHARA array. The data show clear evidence of departure from circular symmetry. We present here new techniques specially developed to analyze such cases, based on state-of-the-art statistical frameworks. The stellar surfaces are first modeled as limb-darkened discs based on SATLAS models that fit both MIRC interferometric data and publicly available spectrophotometric data. Bayesian model selection is then used to determine the most probable number of spots. The effective surface temperatures are also determined and give further support to the recently derived hotter temperature scales of red su- pergiants. The stellar surfaces are reconstructed by our model-independent imaging code SQUEEZE, making use of its novel regularizer based on Compressed Sensing theory. We find excellent agreement between the model-selection results and the reconstructions. Our results provide evidence for the presence of near-infrared spots representing about 3-5% of the stellar flux

    Universal homodyne tomography with a single local oscillator

    Full text link
    We propose a general method for measuring an arbitrary observable of a multimode electromagnetic field using homodyne detection with a single local oscillator. In this method the local oscillator scans over all possible linear combinations of the modes. The case of two modes is analyzed in detail and the feasibility of the measurement is studied on the basis of Monte-Carlo simulations. We also provide an application of this method in tomographic testing of the GHZ state.Comment: 12 pages, 5 figures (8 eps files
    • …
    corecore