32 research outputs found

    Mendelian randomisation analysis provides no evidence for a relationship between adult height and testicular cancer risk.

    Get PDF
    Observational studies have suggested anthropometric traits, particularly increased height are associated with an elevated risk of testicular cancer (testicular germ cell tumour). However, there is an inconsistency between study findings, suggesting the possibility of the influence of confounding factors. To examine the association between anthropometric traits and testicular germ cell tumour using an unbiased approach, we performed a Mendelian randomisation study. We used genotype data from genome wide association studies of testicular germ cell tumour totalling 5518 cases and 19,055 controls. Externally weighted polygenic risk scores were created and used to evaluate associations with testicular germ cell tumour risk per one standard deviation (s.d) increase in genetically-defined adult height, adult BMI, adult waist hip ratio adjusted for BMI (WHRadjBMI), adult hip circumference adjusted for BMI (HIPadjBMI), adult waist circumference adjusted for BMI (WCadjBMI), birth weight (BW) and childhood obesity. Mendelian randomisation analysis did not demonstrate an association between any anthropometric trait and testicular germ cell tumour risk. In particular, despite good power, there was no global evidence for association between height and testicular germ cell tumour. However, three SNPs for adult height individually showed association with testicular germ cell tumour (rs4624820: OR = 1.47, 95% CI: 1.41-1.55, p = 2.7 × 10-57 ; rs12228415: OR = 1.17, 95% CI: 1.11-1.22, p = 3.1 × 10-10 ; rs7568069: OR = 1.13, 95% CI: 1.07-1.18, p = 1.1 × 10-6 ). This Mendelian randomisation analysis, based on the largest testicular germ cell tumour genome wide association dataset to date, does not support a causal etiological association between anthropometric traits and testicular germ cell tumour aetiology. Our findings are more compatible with confounding by shared environmental factors, possibly related to prenatal growth with exposure to these risk factors occurring in utero

    A physical analysis of the Y chromosome shows no additional deletions, other than Gr/Gr, associated with testicular germ cell tumour

    Get PDF
    Testicular germ cell tumour (TGCT) is the most common malignancy in men aged 15–45 years. A small deletion on the Y chromosome known as ‘gr/gr' was shown to be associated with a two-fold increased risk of TGCT, increasing to three-fold in cases with a family history of TGCT. Additional deletions of the Y chromosome, known as AZFa, AZFb and AZFc, are described in patients with infertility; however, complete deletions of these regions have not been identified in TGCT patients. We screened the Y chromosome in a series of TGCT cases to evaluate if additional deletions of Y were implicated in TGCT susceptibility. Single copy Y chromosome STS markers with an average inter-marker spacing of 128 kb were examined in constitutional DNA of 271 index TGCT patients. Three markers showed evidence of deletions, sY1291, indicative of ‘gr/gr' (eight out of 271; 2.9%), Y-DAZ3 contained within ‘gr/gr' (21 out of 271; 7.7%) and a single deletion of the marker G66152 was identified in one TGCT case. No other markers demonstrated deletions. While several regions of the Y chromosome are known to be deleted and associated with infertility, our study provides no evidence to suggest regions of Y deletion, other than ‘gr/gr', are associated with susceptibility to TGCT in UK patients

    Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25

    Get PDF
    Recent genome-wide association studies (GWAS) and subsequent meta-analyses have identified over 25 SNPs at 18 loci, together accounting for >15% of the genetic susceptibility to testicular germ cell tumour (TGCT). To identify further common SNPs associated with TGCT, here we report a three-stage experiment, involving 4098 cases and 18 972 controls. Stage 1 comprised previously published GWAS analysis of 307 291 SNPs in 986 cases and 4946 controls. In Stage 2, we used previously published customised Illumina iSelect genotyping array (iCOGs) data across 694 SNPs in 1064 cases and 10 082 controls. Here, we report new genotyping of eight SNPs showing some evidence of association in combined analysis of Stage 1 and Stage 2 in an additional 2048 cases of TGCT and 3944 controls (Stage 3). Through fixed-effects meta-analysis across three stages, we identified a novel locus at 3q25.31 (rs1510272) demonstrating association with TGCT [per-allele odds ratio (OR) = 1.16, 95% confidence interval (CI) = 1.06-1.27; P = 1.2 × 10-9]

    Runs of homozygosity and testicular cancer risk

    Get PDF
    Background Testicular germ cell tumour (TGCT) is highly heritable but > 50% of the genetic risk remains unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying recessively acting alleles and have been associated with increased risk of other cancer types. Objective To examine whether RoH are associated with TGCT risk. Methods We performed a genome-wide RoH analysis using GWAS data from 3206 TGCT cases and 7422 controls uniformly genotyped using the OncoArray platform. Results Global measures of homozygosity were not significantly different between cases and controls, and the frequency of individual consensus RoH was not significantly different between cases and controls, after correction for multiple testing. RoH at three regions, 11p13-11p14.3, 5q14.1-5q22.3 and 13q14.11-13q.14.13, were, however, nominally statistically significant at p Discussion and conclusion Overall, our data do not support a major role in the risk of TGCT for recessively acting alleles acting through homozygosity, as measured by RoH in outbred populations of cases and controls.</p

    Validation of loci at 2q14.2 and 15q21.3 as risk factors for testicular cancer.

    Get PDF
    Testicular germ cell tumor (TGCT), the most common cancer in men aged 18 to 45 years, has a strong heritable basis. Genome-wide association studies (GWAS) have proposed single nucleotide polymorphisms (SNPs) at a number of loci influencing TGCT risk. To further evaluate the association of recently proposed risk SNPs with TGCT at 2q14.2, 3q26.2, 7q36.3, 10q26.13 and 15q21.3, we analyzed genotype data on 3,206 cases and 7,422 controls. Our analysis provides independent replication of the associations for risk SNPs at 2q14.2 (rs2713206 at P = 3.03 × 10-2; P-meta = 3.92 × 10-8; nearest gene, TFCP2L1) and rs12912292 at 15q21.3 (P = 7.96 × 10-11; P-meta = 1.55 × 10-19; nearest gene PRTG). Case-only analyses did not reveal specific associations with TGCT histology. TFCP2L1 joins the growing list of genes located within TGCT risk loci with biologically plausible roles in developmental transcriptional regulation, further highlighting the importance of this phenomenon in TGCT oncogenesis

    Genome-wide linkage screen for testicular germ cell tumour susceptibility loci

    Get PDF
    A family history of disease is a strong risk factor for testicular germ cell tumour (TGCT). In order to identify the location of putative TGCT susceptibility gene(s) we conducted a linkage search in 237 pedigrees with two or more cases of TGCT. One hundred and seventy-nine pedigrees were evaluated genome-wide with an average inter-marker distance of 10 cM. An additional 58 pedigrees were used to more intensively investigate several genomic regions of interest. Genetic linkage analysis was performed with the ALLEGRO software using two model-based parametric analyses and a non-parametric analysis. Six genomic regions on chromosomes 2p23, 3p12, 3q26, 12p13-q21, 18q21-q23 and Xq27 showed heterogeneity LOD (HLOD) scores of greater than 1, with a maximum HLOD of 1.94 at 3q26. Genome-wide simulation studies indicate that the observed number of HLOD peaks greater than one does not differ significantly from that expected by chance. A TGCT locus at Xq27 has been previously reported. Of the 237 pedigrees examined in this study, 66 were previously unstudied at Xq27, no evidence for linkage to this region was observed in this new pedigree set. Overall, the results indicate that no single major locus can account for the majority of the familial aggregation of TGCT, and suggests that multiple susceptibility loci with weak effects contribute to the diseas

    Runs of homozygosity and testicular cancer risk

    Get PDF
    Background: Testicular germ cell tumour (TGCT) is highly heritable but > 50% of the genetic risk remains unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying recessively acting alleles and have been associated with increased risk of other cancer types. / Objective: To examine whether RoH are associated with TGCT risk. / Methods: We performed a genome‐wide RoH analysis using GWAS data from 3206 TGCT cases and 7422 controls uniformly genotyped using the OncoArray platform. / Results: Global measures of homozygosity were not significantly different between cases and controls, and the frequency of individual consensus RoH was not significantly different between cases and controls, after correction for multiple testing. RoH at three regions, 11p13‐11p14.3, 5q14.1‐5q22.3 and 13q14.11‐13q.14.13, were, however, nominally statistically significant at p < 0.01. Intriguingly, RoH200 at 11p13‐11p14.3 encompasses Wilms tumour 1 (WT1), a recognized cancer susceptibility gene with roles in sex determination and developmental transcriptional regulation, processes repeatedly implicated in TGCT aetiology. / Discussion and conclusion: Overall, our data do not support a major role in the risk of TGCT for recessively acting alleles acting through homozygosity, as measured by RoH in outbred populations of cases and controls

    Genomic landscape of platinum resistant and sensitive testicular cancers

    Get PDF
    Abstract: While most testicular germ cell tumours (TGCTs) exhibit exquisite sensitivity to platinum chemotherapy, ~10% are platinum resistant. To gain insight into the underlying mechanisms, we undertake whole exome sequencing and copy number analysis in 40 tumours from 26 cases with platinum-resistant TGCT, and combine this with published genomic data on an additional 624 TGCTs. We integrate analyses for driver mutations, mutational burden, global, arm-level and focal copy number (CN) events, and SNV and CN signatures. Albeit preliminary and observational in nature, these analyses provide support for a possible mechanistic link between early driver mutations in RAS and KIT and the widespread copy number events by which TGCT is characterised

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers
    corecore