318 research outputs found

    Predicción climática decadal global con el modelo EC-EARTH: avanzando hacia una predicción operativa en tiempo real [Presentación]

    Get PDF
    Presentación realizada en el VI Simposio Nacional de Predicción "Memorial Antonio Mestre", celebrado en la sede central de AEMET en Madrid del 17 al 19 de septiembre de 2018

    La franja aurífera de Xallas (Galicia occidental, España): Las mineralizaciones de Albores dentro de un contexto tectónico y metalogénico evolutivo.

    Get PDF
    Las mineralizaciones de oro de Albores (Galicia occidental) se encuadran dentro de una franja metalogénica N-S a NE de edad hercínica-tardihercínica (franja aurífera de Xallas). Dicha franja comprende una serie de indicios auríferos caracterizados por la presencia de una fase sulfurada rica en arsenopirita y otra metálica con oro/electrum. Estas mineralizaciones encajan generalmente en estructuras frágiles desarrolladas en zonas de cizalla de componente horizontal y vertical, que incluyen mílonitas, ultramilonitas, cataclasitas y brechas.Las mineralizaciones de Albores incluyen una paragénesis compleja consistente en arsenopirita, oro/electrum, pirrotina, marcasita, pirita, bismuto, bismutina, esfalerita, galena y calcopirita. Estudios de inclusionesfluidas en cuarzos acompañantes de la mineralización sugieren que ésta fue depositada por fluidos acuoso-carbónicos complejos de moderada baja salinidad (<56-9 por 100 eq. NaCI; salinidades máximas) operando en un rango de temperaturas epi a mesotermal (Th: 18Cl°-36Cl° CJ. Estas mineralizaciones se formaron durante un régimen extensional desarrollado durante el período comprendido entre la fase deformativa 3 hercínica (D3; Carbonífero Medio) y el episodio frágil tardihercínico (Carbonífero Superior/Pérmico Inferior}. La etapa extensional se caracterizó por el desarrollo de corredores miloníticos principalmente extensionales, de bajo ángulo (zona de cizalla de Xallas) con superposición de estructuras frágiles sobre la fábrica dúctil, estructuras antiformes, y fallas normales de gran ángulo de carácter frágil

    Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    Get PDF
    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992–2010 period performed by five different global coupled ocean–atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land–atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.The authors thank Jeff Knight (Met Office Hadley Centre) for his constructive comments on earlier versions of this manuscript. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007–2013) SPECS project (Grant Agreement Number 308378) and H2020 Framework Programme IMPREX project (Grant Agreement Number 641811). Constantin Ardilouze was also supported by the BSC Centro de Excelencia Severo Ochoa Programme.Peer ReviewedPostprint (author's final draft

    Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset

    Get PDF
    This work presents a comprehensive intercomparison of diferent alternatives for the calibration of seasonal forecasts, ranging from simple bias adjustment (BA)-e.g. quantile mapping-to more sophisticated ensemble recalibration (RC) methods- e.g. non-homogeneous Gaussian regression, which build on the temporal correspondence between the climate model and the corresponding observations to generate reliable predictions. To be as critical as possible, we validate the raw model and the calibrated forecasts in terms of a number of metrics which take into account diferent aspects of forecast quality (association, accuracy, discrimination and reliability). We focus on one-month lead forecasts of precipitation and temperature from four state-of-the-art seasonal forecasting systems, three of them included in the Copernicus Climate Change Service dataset (ECMWF-SEAS5, UK Met Ofce-GloSea5 and Météo France-System5) for boreal winter and summer over two illustrative regions with diferent skill characteristics (Europe and Southeast Asia). Our results indicate that both BA and RC methods efectively correct the large raw model biases, which is of paramount importance for users, particularly when directly using the climate model outputs to run impact models, or when computing climate indices depending on absolute values/thresholds. However, except for particular regions and/or seasons (typically with high skill), there is only marginal added value-with respect to the raw model outputs-beyond this bias removal. For those cases, RC methods can outperform BA ones, mostly due to an improvement in reliability. Finally, we also show that whereas an increase in the number of members only modestly afects the results obtained from calibration, longer hindcast periods lead to improved forecast quality, particularly for RC methods.This work has been funded by the C3S activity on Evaluation and Quality Control for seasonal forecasts. JMG was partially supported by the project MULTI-SDM (CGL2015-66583-R, MINECO/FEDER). FJDR was partially funded by the H2020 EUCP project (GA 776613)
    corecore