141 research outputs found

    Hanle effect in the CN violet system with LTE modeling

    Full text link
    Weak entangled magnetic fields with mixed polarity occupy the main part of the quiet Sun. The Zeeman effect diagnostics fails to measure such fields because of cancellation in circular polarization. However, the Hanle effect diagnostics, accessible through the second solar spectrum, provides us with a very sensitive tool for studying the distribution of weak magnetic fields on the Sun. Molecular lines are very strong and even dominate in some regions of the second solar spectrum. The CN B2Σ−X2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system is one of the richest and most promising systems for molecular diagnostics and well suited for the application of the differential Hanle effect method. The aim is to interpret observations of the CN B2Σ−X2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system using the Hanle effect and to obtain an estimation of the magnetic field strength. We assume that the CN molecular layer is situated above the region where the continuum radiation is formed and employ the single-scattering approximation. Together with the Hanle effect theory this provides us with a model that can diagnose turbulent magnetic fields. We have succeeded in fitting modeled CN lines in several regions of the second solar spectrum to observations and obtained a magnetic field strength in the range from 10--30 G in the upper solar photosphere depending on the considered lines.Comment: Accepted for publication in Astronomy and Astrophysic

    First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved

    Get PDF
    We report the first direct detection of a strong, 5 kG magnetic field on the surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting transient radio and optical emission bursts modulated by fast rotation. We have detected the surface magnetic field as circularly polarized signatures in the 819 nm sodium lines when an active emission region faced the Earth. Modeling Stokes profiles of these lines reveals the effective temperature of 2800 K and log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on evolutionary tracks as a young brown dwarf with the mass of 55±\pm4 MJ_{\rm J} and age of 22±\pm4 Myr. Its magnetic field is at least 5.1 kG and covers at least 11% of the visible hemisphere. The active region topology recovered using line profile inversions comprises hot plasma loops with a vertical stratification of optical and radio emission sources. These loops rotate with the dwarf in and out of view causing periodic emission bursts. The magnetic field is detected at the base of the loops. This is the first time that we can quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG surface magnetic field and solve the puzzle of their driving mechanism. This is also the coolest known dwarf with such a strong surface magnetic field. The young age of LSR J1835+3259 implies that it may still maintain a disk, which may facilitate bursts via magnetospheric accretion, like in higher-mass T Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs and hot Jupiters.Comment: ApJ, in pres

    Modelling the molecular Zeeman effect in M-dwarfs: methods and first results

    Full text link
    We present first quantitative results of the surface magnetic field measurements in selected M-dwarfs based on detailed spectra synthesis conducted simultaneously in atomic and molecular lines of the FeH Wing-Ford F4 Δ−X4 ΔF^4\,\Delta-X^4\,\Delta transitions. A modified version of the Molecular Zeeman Library (MZL) was used to compute Land\'e g-factors for FeH lines in different Hund's cases. Magnetic spectra synthesis was performed with the Synmast code. We show that the implementation of different Hund's case for FeH states depending on their quantum numbers allows us to achieve a good fit to the majority of lines in a sunspot spectrum in an automatic regime. Strong magnetic fields are confirmed via the modelling of atomic and FeH lines for three M-dwarfs YZ~CMi, EV~Lac, and AD~Leo, but their mean intensities are found to be systematically lower than previously reported. A much weaker field (1.7−21.7-2~kG against 2.72.7~kG) is required to fit FeH lines in the spectra of GJ~1224. Our method allows us to measure average magnetic fields in very low-mass stars from polarized radiative transfer. The obtained results indicate that the fields reported in earlier works were probably overestimated by about 15−3015-30\%. Higher quality observations are needed for more definite results.Comment: Accepted by A&A, 13 pages, 7 figures, 1 tabl

    First polarimetric measurements and modeling of the Paschen-Back effect in CaH transitions

    Get PDF
    We report the first spectropolarimetric observations and modeling of CaH transitions in sunspots. We have detected strong polarization signals in many CaH lines from the A-X system, and we provide the first successful fit to the observed Stokes profiles using the previously developed theory of the Paschen-Back effect in arbitrary electronic states of diatomic molecules and polarized radiative transfer in molecular lines in stellar atmospheres. We analyze the CaH Stokes profiles together with quasi-simultaneous observations in TiO bands and conclude that CaH provides a valuable diagnostic of magnetic fields in sunspots, starspots, cool stars, and brown dwarfs

    NLTE modeling of Stokes vector center-to-limb variations in the CN violet system

    Full text link
    The solar surface magnetic field is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allow for measuring only a small fraction of the fractal-like structured magnetic field. The remaining hidden magnetic fields can only be accessed with the Hanle effect. Molecular lines are very convenient for applying the Hanle effect diagnostics thanks to the broad range of magnetic sensitivities in a narrow spectral region. With the UV version of the Zurich Imaging Polarimeter ZIMPOL II installed at the 45 cm telescope of the Istituto Ricerche Solari Locarno (IRSOL), we simultaneously observed intensity and linear polarization center-to-limb variations in two spectral regions containing the (0,0) and (1,1) bandheads of the CN B 2 {\Sigma} - X 2 {\Sigma} system. Here we present an analysis of these observations. We have implemented coherent scattering in molecular lines into a NLTE radiative transfer code. A two-step approach was used. First, we separately solved the statistical equilibrium equations and compute opacities and intensity while neglecting polariza- tion. Then we used these quantities as input for calculating scattering polarization and the Hanle effect. We have found that it is impossible to fit the intensity and polarization simultaneously at different limb angles in the frame- work of standard 1D modeling. The atmosphere models that provide correct intensity center-to-limb variations fail to fit linear polar- ization center-to-limb variations due to lacking radiation field anisotropy. We had to increase the anisotropy by means of a specially introduced free parameter. This allows us to successfully interpret our observations. We discuss possible reasons for underestimating the anisotropy in the 1D modeling.Comment: 15 pages, 10 figures, accepted for publication in Astronomy&Astrophysic

    Aspects of Multi-Dimensional Modelling of Substellar Atmospheres

    Full text link
    Theoretical arguments and observations suggest that the atmospheres of Brown Dwarfs and planets are very dynamic on chemical and on physical time scales. The modelling of such substellar atmospheres has, hence, been much more demanding than initially anticipated. This Splinter (http://star-www.st-and.ac.uk/~ch80/CS16/MultiDSplinter_CS16.html) has combined new developments in atmosphere modelling, with novel observational techniques, and new challenges arising from planetary and space weather observations.Comment: 12 pages, 5 figures, summery of Cool Stars 16 Splinter 'Multi-Dimensional Modelling of Substellar Atmospheres

    Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

    Full text link
    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies Gorobets, A. Y., Borrero, J. M., & Berdyugina, S. 2016, ApJL, 825, L18 of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field's evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.Comment: 11 pages, 5 figures, The Astrophysical Journal Supplement Series (accepted

    Long-term chromospheric activity of non-eclipsing RS CVn-type stars

    Full text link
    Context. The IUE database provides a large number of UV high and low-resolution spectra of RS CVn-type stars from 1978 to 1996. In particular, many of these stars were monitored continuously during several seasons by IUE. Aims. Our main purpose is to study the short and long-term chromospheric activity of the RS CVn systems most observed by IUE: HD 22468 (V711 Tau, HR 1099, K1IV+G5V), HD 21242 (UX Ari, K0IV+G5V) and HD 224085 (II Peg, K2IV). Methods. We first obtain the Mount Wilson index S from the IUE high and low-resolution spectra. Secondly, we analyse with the Lomb-Scargle periodogram the mean annual index S and the amplitude of its rotational modulation. Results. For HD 22468 (V711 Tau, HR 1099), we found a possible chromospheric cycle with a period of 18 years and a shorter cycle with a period of 3 years, which could be associated to a chromospheric "flip-flop" cycle. The data of HD 224085 (II Peg) also suggest a chromospheric cycle of 21 years and a flip-flop cycle of 9 years. Finally, we obtained a possible chromospheric cycle of 7 years for HD 21242 (UX Ari).Comment: accepted for publication in Astronomy and Astrophysic
    • …
    corecore