1,240 research outputs found

    Guidelines for physical weed control research: flame weeding, weed harrowing and intra-row cultivation

    Get PDF
    A prerequisite for good research is the use of appropriate methodology. In order to aggregate sound research methodology, this paper presents some tentative guidelines for physical weed control research in general, and flame weeding, weed harrowing and intra-row cultivation in particular. Issues include the adjustment and use of mechanical weeders and other equipment, the recording of impact factors that affect weeding performance, methods to assess effectiveness, the layout of treatment plots, and the conceptual models underlying the experimental designs (e.g. factorial comparison, dose response). First of all, the research aims need to be clearly defined, an appropriate experimental design produced and statistical methods chosen accordingly. Suggestions on how to do this are given. For assessments, quantitative measures would be ideal, but as they require more resources, visual classification may in some cases be more feasible. The timing of assessment affects the results and their interpretation. When describing the weeds and crops, one should list the crops and the most abundantly present weed species involved, giving their density and growth stages at the time of treatment. The location of the experimental field, soil type, soil moisture and amount of fertilization should be given, as well as weather conditions at the time of treatment. The researcher should describe the weed control equipment and adjustments accurately, preferably according to the prevailing practice within the discipline. Things to record are e.g. gas pressure, burner properties, burner cover dimensions and LPG consumption in flame weeding; speed, angle of tines, number of passes and direction in weed harrowing. The authors hope this paper will increase comparability among experiments, help less experienced scientists to prevent mistakes and essential omissions, and foster the advance of knowledge on non-chemical weed management

    A generalized theory of semiflexible polymers

    Get PDF
    DNA bending on length scales shorter than a persistence length plays an integral role in the translation of genetic information from DNA to cellular function. Quantitative experimental studies of these biological systems have led to a renewed interest in the polymer mechanics relevant for describing the conformational free energy of DNA bending induced by protein-DNA complexes. Recent experimental results from DNA cyclization studies have cast doubt on the applicability of the canonical semiflexible polymer theory, the wormlike chain (WLC) model, to DNA bending on biological length scales. This paper develops a theory of the chain statistics of a class of generalized semiflexible polymer models. Our focus is on the theoretical development of these models and the calculation of experimental observables. To illustrate our methods, we focus on a specific toy model of DNA bending. We show that the WLC model generically describes the long-length-scale chain statistics of semiflexible polymers, as predicted by the Renormalization Group. In particular, we show that either the WLC or our new model adequate describes force-extension, solution scattering, and long-contour-length cyclization experiments, regardless of the details of DNA bend elasticity. In contrast, experiments sensitive to short-length-scale chain behavior can in principle reveal dramatic departures from the linear elastic behavior assumed in the WLC model. We demonstrate this explicitly by showing that our toy model can reproduce the anomalously large short-contour-length cyclization J factors observed by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics in the context of future experiments

    Low inbreeding and high pollen dispersal distances in populations of two Amazonian Forest tree species.

    Get PDF
    Made available in DSpace on 2018-06-07T01:03:50Z (GMT). No. of bitstreams: 1 ID292081.pdf: 197147 bytes, checksum: c741c2bf54ad5ef7cf716c2906330c89 (MD5) Previous issue date: 2008-02-25bitstream/item/178263/1/ID-29208-1.pd

    Testing and Validation of the Dynamic Inertia Measurement Method

    Get PDF
    The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions

    Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    Get PDF
    The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles

    The critical velocity effect as a cause for the H\alpha emission from the Magellanic stream

    Full text link
    Observations show significant H\alpha-emissions in the Galactic halo near the edges of cold gas clouds of the Magellanic Stream. The source for the ionization of the cold gas is still a widely open question. In our paper we discuss the critical velocity effect as a possible explanation for the observed H\alpha-emission. The critical velocity effect can yield a fast ionization of cold gas if this neutral gas passes through a magnetized plasma under suitable conditions. We show that for parameters that are typical for the Magellanic Stream the critical velocity effect has to be considered as a possible ionization source of high relevance.Comment: 9 pages, 2 figures. accepted, to appear in The Astrophysical Journa

    Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform ∕DNA∕1,3-diaminopropane films deposited on highly ordered pyrolitic graphite.

    No full text
    International audience: It was recently shown that the affinity of doubly charged, 1-3 diaminopropane (Dap(2+)) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291-21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA(-) transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films

    Social influence and moment-to-moment changes in young adults’ mood and psychotic symptoms

    Get PDF
    Background: • Social situations can have a significant impact on young people’s mood and mental experiences. • More specifically, we want to know how someone’s perceived social influence in social situations relates to their mood and psychotic symptoms. • Past studies have found connections between lower perceived social status (rank, comparison, and related concepts) and psychotic symptoms anxiety, depression, and other mood related psychopathology. • We use experience sampling methods to capture moment-to-moment changes in mood and psychotic symptoms in a variety of social settings

    Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit

    Full text link
    The bright M dwarf K2-18 at 34 pc is known to host a transiting super-Earth-sized planet orbiting within the star's habitable zone; K2-18b. Given the superlative nature of this system for studying an exoplanetary atmosphere receiving similar levels of insolation as the Earth, we aim to characterize the planet's mass which is required to interpret atmospheric properties and infer the planet's bulk composition. We obtain precision radial velocity measurements with the HARPS spectrograph and couple those measurements with the K2 photometry to jointly model the observed radial velocity variation with planetary signals and a radial velocity jitter model based on Gaussian process regression. We measure the mass of K2-18b to be 8.0±1.98.0 \pm 1.9 M_{\oplus} with a bulk density of 3.7±0.93.7 \pm 0.9 g/cm3^3 which may correspond to a predominantly rocky planet with a significant gaseous envelope or an ocean planet with a water mass fraction 50\gtrsim 50%. We also find strong evidence for a second, warm super-Earth K2-18c at 9\sim 9 days with a semi-major axis 2.4 times smaller than the transiting K2-18b. After re-analyzing the available light curves of K2-18 we conclude that K2-18c is not detected in transit and therefore likely has an orbit that is non-coplanar with K2-18b. A suite of dynamical integrations with varying simulated orbital eccentricities of the two planets are used to further constrain each planet's eccentricity posterior from which we measure eb<0.43e_b < 0.43 and ec<0.47e_c < 0.47 at 99% confidence. The discovery of the inner planet K2-18c further emphasizes the prevalence of multi-planet systems around M dwarfs. The characterization of the density of K2-18b reveals that the planet likely has a thick gaseous envelope which along with its proximity to the Solar system makes the K2-18 planetary system an interesting target for the atmospheric study of an exoplanet receiving Earth-like insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom

    Engineering Design with Digital Thread

    Get PDF
    Digital Thread offers the opportunity to use information generated across the product lifecycle to design the next generation of products. In this paper, we introduce a mathematical methodology that establishes the data-driven design and decision problem associated with Digital Thread. Our objectives are twofold: 1) Provide a mathematical definition of Digital Thread in the context of conceptual and preliminary design and establish a methodology for how information along the Digital Thread enters into the design problem as well how design decisions affect the Digital Thread. 2) Develop a data-driven design method that incorporates data from different sources from across the product life cycle. We illustrate aspects of our methodology through an example design of a structural fiber-steered composite component.United States. Air Force. Office of Scientific Research (Grant FA9550-16-1-0108)SUTD-MIT International Design Centre (IDC
    corecore