6,704 research outputs found

    The Role of Experts across Two Different Arenas in a Deliberative System

    Get PDF
    The notion of a “deliberative system” has become central to debates on deliberation. The plea to regard deliberative processes from a system-wide perspective is genuinely innovative and attractive, but little has been done to understand how deliberation in one arena or a separate institution relates to other arenas. This study investigates the role that experts play in public communication in two arenas that have distinct systemic functions. It compares how experts express and justify their opinions on a controversial public policy in legislative public hearings and when they are quoted in the news media. Our findings, based on an empirical case study, revealed that experts played a similar role in different contexts in micro- and macro arenas; and most debate participants appealed to technical knowledge to compel a particular decision. Our analysis concludes by reflecting upon the interconnectivities of the aforementioned arenas; and the systemic approach implications on empirical research

    GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit

    Get PDF
    We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the toolkit builds upon previous releases and implements the evolution of relativistic magnetized fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both constrained transport and hyperbolic divergence cleaning schemes. We present test results for a number of MHD tests in Minkowski and curved spacetimes. Minkowski tests include aligned and oblique planar shocks, cylindrical explosions, magnetic rotors, Alfvén waves and advected loops, as well as a set of tests designed to study the response of the divergence cleaning scheme to numerically generated monopoles. We study the code's performance in curved spacetimes with spherical accretion onto a black hole on a fixed background spacetime and in fully dynamical spacetimes by evolutions of a magnetized polytropic neutron star and of the collapse of a magnetized stellar core. Our results agree well with exact solutions where these are available and we demonstrate convergence. All code and input files used to generate the results are available on http://einsteintoolkit.org. This makes our work fully reproducible and provides new users with an introduction to applications of the code

    Power-Law Sensitivity to Initial Conditions within a Logistic-like Family of Maps: Fractality and Nonextensivity

    Full text link
    Power-law sensitivity to initial conditions, characterizing the behaviour of dynamical systems at their critical points (where the standard Liapunov exponent vanishes), is studied in connection with the family of nonlinear 1D logistic-like maps xt+1=1axtz,(z>1;0<a2;t=0,1,2,...)x_{t+1} = 1 - a | x_t |^z, (z > 1; 0 < a \le 2; t=0,1,2,...) The main ingredient of our approach is the generalized deviation law \lim_{\Delta x(0) -> 0} \Delta x(t) / \Delta x(0)} = [1+(1-q)\lambda_q t]^{1/(1-q)} (equal to eλ1te^{\lambda_1 t} for q=1, and proportional, for large t, to t1/(1q)t^{1/(1-q)} for q1;qRq \ne 1; q \in R is the entropic index appearing in the recently introduced nonextensive generalized statistics). The relation between the parameter q and the fractal dimension d_f of the onset-to-chaos attractor is revealed: q appears to monotonically decrease from 1 (Boltzmann-Gibbs, extensive, limit) to -infinity when d_f varies from 1 (nonfractal, ergodic-like, limit) to zero.Comment: LaTeX, 6 pages , 5 figure

    Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP

    Get PDF
    An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \ell \equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. The mass measurement is equivalent to a test of the flavour independence of the strong coupling constant with an accuracy of 7 permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio

    Double parton interactions in photon+3 jet events in ppbar collisions sqrt{s}=1.96 TeV

    Get PDF
    We have used a sample of photon+3 jets events collected by the D0 experiment with an integrated luminosity of about 1 fb^-1 to determine the fraction of events with double parton scattering (f_DP) in a single ppbar collision at sqrt{s}=1.96 TeV. The DP fraction and effective cross section (sigma_eff), a process-independent scale parameter related to the parton density inside the nucleon, are measured in three intervals of the second (ordered in pT) jet transverse momentum pT_jet2 within the range 15 < pT_jet2 < 30 GeV. In this range, f_DP varies between 0.23 < f_DP < 0.47, while sigma_eff has the average value sigma_eff_ave = 16.4 +- 0.3(stat) +- 2.3(syst) mb.Comment: 15 pages, 13 figure

    Measurement of the t-channel single top quark production cross section

    Get PDF
    The D0 collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb^-1 of ppbar collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14 +0.94 -0.80 pb for the t-channel and 1.05 +-0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.Comment: 7 pages, 6 figure
    corecore