36,865 research outputs found

    Service user involvement in the evaluation of psycho-social intervention for self-harm: a systematic literature review

    Get PDF
    Background: The efficacy of interventions and treatments for self-harm is well researched. Previous reviews of the literature have highlighted the lack of definitively effective interventions for self-harm and have highlighted the need for future research. These recommendations are also reflected in clinical guidelines published by the National Institute for Health and Clinical Excellence (NICE, 2004) which also call for service user involvement in studies of treatment efficacy. Aims: A systematic review was undertaken to determine i) what contributions service users have made to the evaluation of psychosocial interventions ii) by what methods have service users been involved iii) in what ways could service user involvement supplement empirical evidence for interventions

    Adaptive control system for line-commutated inverters

    Get PDF
    A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies

    Vibration of skewed cantilever plates and helicoidal shells

    Get PDF
    Theoretical vibration frequencies and mode shapes are obtained for skewed plates and helicoidal shells with a cantilever boundary. Using Hamilton's law of varying action, a power series solution is developed to obtain converged numerical results for the five lowest frequencies. Effects of geometrical variables such as aspect ratio, sweep angle and shell radius to thickness ratio are investigated. Accuracy of the solution method is substantiated by comparison with existing skewed plate spherical cap, and conical shell results

    Characteristic impedance of microstrip lines

    Get PDF
    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results

    Electronic compensation for reflector surface distortion to improve radiation pattern characteristics of antennas

    Get PDF
    A simple procedure is described for determining the excitation coefficients of an array feed which compensates for the surface distortion of a reflector antenna to improve the radiation pattern in such a way as to approximate the performance of the undistorted antenna. A computer simulation for a practical feed array is presented as an example of compensation for the distortion of an actual antenna

    Time-delay and Doppler tests of the Lorentz symmetry of gravity

    Get PDF
    Modifications to the classic time-delay effect and Doppler shift in General Relativity (GR) are studied in the context of the Lorentz-violating Standard-Model Extension (SME). We derive the leading Lorentz-violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of sensitivities to gravity-sector coefficients in the SME are given for current and future experiments, including the recent Cassini solar conjunction experiment.Comment: 13 pages, 4 figures, references added, matches PRD versio

    Laser driven launch vehicles for continuous access to space

    Get PDF
    The availability of megawatt laser systems in the next century will make laser launch systems from ground to orbit feasible and useful. Systems studies indicate launch capabilities of 1 ton payload per gigawatt laser power. Recent research in ground to orbit laser propulsion has emphasized laser supported detonation wave thrusters driven by repetitively pulsed infrared lasers. In this propulsion concept each laser repetition cycle consists of two pulses. A lower energy first pulse is used to vaporize a small amount of solid propellant and then after a brief expansion period, a second and higher energy laser pulse is used to drive a detonation wave through the expanded vapor. The results are reported of numerical studies comparing the detonation wave properties of various candidate propellants, and the simulation of thruster performance under realistic conditions. Experimental measurements designed to test the theoretical predictions are also presented. Measurements are discussed of radiance and opacity in absorption waves, and mass loss and momentum transfer. These data are interpreted in terms of specific impulse and energy conversion efficiency

    Oscillating chiral currents in nanotubes: a route to nanoscale magnetic test tubes

    Get PDF
    With a view to optimising the design of carbon-nanotube (CNT) windmills and to maximising the internal magnetic field generated by chiral currents, we present analytical results for the group velocity components of an electron flux through chiral carbon nanotubes. Chiral currents are shown to exhibit a rich behaviour and can even change sign and oscillate as the energy of the electrons is increased. We find that the transverse velocity and associated angular momentum of electrons is a maximum for non-metallic CNTs with a chiral angle of 18o^o. Such CNTs are therefore the optimal choice for CNT windmills and also generate the largest internal magnetic field for a given longitudinal current. For a longitudinal current of order 10410^{-4} amps, this field can be of order 10110^{-1}Teslas, which is sufficient to produce interesting spintronic effects and a significant contribution to the self inductance.Comment: 4 pages, 1 figur
    corecore