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SUMMARY

The vlbration eigenvalues and modes have been analyti-
cally determined for the helicoidal shell and its limiting
case, the skewed flat plate. A general analysis is given
wherein the energy equation employed is derived from
Hamilton's Law of Varying Action. No numerical data has
been found in the literature for the helicoidal shell. Re-
sults for spherical caps and complete conical shells, ob-
tained by the method of this paper, are compared to exact
solutions from the literature for these two shell geometries.
The authors consider this paper to be a significant step
toward an analytical solution to the thermally stressed,
variable thickness, turbine blade immersed in both a fluid
flow field and in an acceleration field.
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INTRODUCTION

In recent years emphasis in solid mechanics has shifted
from plates to shells. This can be attributed to the fact
that thin plate vibrations have been widely explored for
simple geometries such as the circle, the rectangle, and the
rhombus [1]. Exact solutions were found for isolated cases.
However, for many boundary conditions the analyst was (and
is) forced to seek an approximate solution. "Approximate"
usually meant a Rayleigh-Ritz type solution. "Beam" func-
tions became popular among plate analysts who attempted
solutions by Rayleigh-Ritz since they already satisfiled the
geometric boundary conditions. The results in many cases
were less than satisfactory. This inaccuracy was generally
attributed to the fact that the method was "approximate".

With the advent of finite element analysis, the analyst
had at his disposal an approximate method which took much
less intuitlon than Rayleigh-Ritz (the Rayleigh-Ritz method
requires one to assume a solution in the form of "admissible
functions). A predominance of the finite element technique
has come about for numerous reasons, but two major factors
are the easy satisfaction of the boundary conditions and the
ease of handling complicated geometric shapes. However, us-
ing concepts long understood for satisfaction of boundary
conditions [2], the Ritz method can now be applied to geo-
metrically complicated structures with great accuracy for
both stationary and non-stationary problems.

Since finite element analysis is now widely accepted as
the best way to solve the difficult problems, the Rayleigh-
Ritz procedure has been pushed aside [3]. In the authors'
opinion, it is unfortunate that analysts always think of
Rayleigh-Ritz instead of just Ritz [43. Rayleigh's intent
was that of choosing one function, which if at all close to
the true mode shape, would yield a fair, if not good,
approximation for the frequency by means of Rayleigh's quo-
tient. However, Ritz's idea was that of choosing a series
of suitable approximating functions. Ritz [4] showed that
such a series, with a finite number of terms, converges to
an upper bound of the true solution. His proof, however, and
the resulting direct solutions apply only to stationary
systems. Using concepts [5] associated with Hamilton's Law
of Varying Action [6] the authors have obtained direct solu-
tions to non-stationary and/or non-conservative systems.
When calculating the transient motion of a deformable body,
a major simplification for achieving direct solutions (as
with the equations of Lagrange) results when one uses the
free vibration modes and normal coordinates, whether or not
this procedure uncouples the system. Thus, the generation
of free vibration modes and frequenciles continues to be of
great importance in the solution of the problems of the



displacement or motion of physical systems. As a result,
the authors have restricted this paper to a particularly
difficult (and unsolved to the author's knowledge) but con-
servative, stationary problem: the free vibration modes and
frequencies of a helicoidal shell.

A fact which seems to have been overlooked, possibly
because of the concepts associated with the Rayleigh-Ritz
method, is the accuracy obtainable when power series are
taken as the "admissible" functions. In this paper, Appendix
I, and in other work, the degree of accuracy which can be ob-
tained by direct soclutions of the energy equation has been
compared by the authors to exact solutions where available.
In all applications (particles, rigid bodles, beams, plates,
and shells), when finite time intervals and finite space
intervals are properly employed, the degree of accuracy far
surpassed expectations. The Ritz method, in every case, con-
verged to the exact solution, for the constraints assumed,
in the same sense that any number representing the solution
to a transcendental equation can be considered to be exact.
The results of these endeavors all indicate that the idea of
"approximation" associated with the Rayleigh concept should
not be associated with the Ritz method.

As mentioned above, this study is restricted to the
stationary problem of simple harmonic vibrations. For the
helicoidal shell, the displacement field is completely des-
cribed by the displacements u, v, and w, all three of which
are functions of the orthogonal surface coordinates X and y.
In the limiting case of the flat plate, only w is consildered,
where w is a function of the rectangular inplane coordinates
x and y. Inplane (or membrane) vibration for the flat plate
will not be treated, although the authors have completed"
such solutions for the rectangular cantilever plate [2]. As
has been shown for a completely free elliptical plate [T7],
and for plates with various other boundary conditions (Refs.
[2], [8], when power series are used the Ritz method yields
very accurate mode shapes as well as accurate frequencies.

This work was supported in part by the Department of
Aeronautical and Astronautical Engineering, The Ohio State
University, and in part by the NASA Langley Research Center
through Grants NGL-36-008-109 and NGR-36-008-197.



CHAPTER I.
THEORY

Hamilton's Law

In attempting an energy solution, it seems that the
analyst is always confronteéed with which energy equation or
theorem to use as a starting point. One form which embodies
all other energy equations of the mechanics of solids, is
that enunciated in 1834 by Sir William Rowan Hamilton [6]
and called by him the "Law of Varying Action". It 1s not
the well known Hamilton's Principle. Indeed Hamilton's
Principle is a special case of Hamilton's Law (throughout
the text Hamilton's Law will refer to the Law of Varying
Action). Hamilton's Principle is usually written [9] as,

Ty
§ £ (T + W) dt = 0 (D)
to

where T is the total kinetic energy of the system and W is
the total work of forces acting on or within the system.
Hamilton's Law, which is much more general [6], is expressed
as,

t t1
§ f T(T + W) dt - ag? sq3 |7 =0 (2)
In the variational calculus, a stationary solution is, by
definition, a solution of a given system for which

t1
3%? §q4 é = 0. Eq. (2), which reduces to Egq. (1) for
i
0

stationary motion, applies to non-stationary motion as well
[5]. No matter what the motion is, Eq. (2) will yield either
a direct solution (as in this paper) or the differential
equations of the system.

Strain-Displacement Egquations

It is assumed that the material of the shell is isotropic
and obeys a linear stress-strain relationship. In addition,
it i1s assumed that the oscillations cause infinitesimal dis-~-
placements which can be described by a set of linear strain-
displacement relations. These strain-displacement relations
come about as a result of considering the deformation of the



middle surface. The additional assunption that normals to
the middle surface remain normal throughout the deformation
process, always made in thin shell theory, then locates all
other points in the body relative to the middle surface.
Since differential geometry is not the topic of this paper
the authors will merely restate the linear strain-
displacement relations for thin shells given by Novozhilov

[10].

= 1 2u %A = 1l —
®x * % 3x T B 3y v+ ﬁ; W
_1ev, 1 9Bo,1g
vy Bay "aBawx TR "
B 3 (= A 3 (T
= = — + = = A
€xy I 3% (v/B) 5y (u/h)
R, =L 2 (13w _ u, 1 2A 13w _ 3V
x = % 3% 'Asx R, " AB 3y ‘B oy Ry)
kK, =-L3 Ll _ v, 13B 13w _u
y B3 'Boy R ~BBx (Aax R
K o _ 2 (%W _ 1 02A oW _123B W
Xy AB ‘sxsy A 3y sx _ B 8x 9y’
2 ,13u 1 3A 2,137 _ 1 3B =
‘R By oy W PR (Eex A ax V) (3)

For any point on the surface of a right circular cylinder,
where x is the axis of the cylinder and y is the circumfer-
ential angle measured from the vertical (clockwise positive,
see Fig. 3), the following geometrical relations are ftrue:

= o

R = constant

w = = T
]

1
= R = constant



2A _ %A _ 3B _ 3B _ 29 3 d . 9
————————— (R) = E(RX) = W(R_y) = E(Ry) =0 (4)

where R is the radius of the cylinder. With these simplifi-
cations Eq. (3) becomes,

_ ou
£x T 3%
=1 3V, =
ey 5 (ay + W)
_ 108
€xy = 3x T & B3y
K =__a_2£
X 3.2
2 —_
K=—_.1__.3W+L3_Y
2 32% 2 v
K,. = - & 2 9V
Xy R 9xay t R 3% (5)

The total strain of any point in the body is given by,

ey = ex + 2 Ky
ey = ey + z Ky
xy = €xy T Z Kxy (6)

where z is the distance from the middle surface. TFor the
plane stress problem (that is o, 1s negligible, thin shell
assumption) the stress at any point in the body is given by,

E — —
m(ex 4+ v ey)

Ox

oy ——ELZ— (ey + v oey)
(1-v7)

-  _ E
Oxy T S(1+v) XY (T

[l S



Work

For an elastic body, the work, W, is that due to the
internal elastic restoring forces, the internal or "body"
forces, and the external or surface forces:

W= - Sif(oy e, + E& ey + oxy exy) R dx dy dz
+ fff(FBx u o+ FBy v o+ Fp, w) R dx dy d=z

+ Fa u + v o+ w
Jr( s U Fsy v + Fg W) ds (8)

Taking the variation of Eq. (8) with respect to the displace-
ments (as in the principle of virtual work) yields,

§W = - fff(oy Sey + oy Se, + o

y xy Sexy) R dx dy dgz

+ [17 (P, su + Fg sV + T, sw) R dx dy dz

+ [I(Fs, su + Fsy 8V + Fg, 6w) dS (9)

Kinetic Energy

Rotary inertia is negligible for thin plate and thin shell
vibrations, thus, neglecting rotary inertia, the total
kinetic energy is,

22 2 =2
T=2 /o (W +V +W)Rdxdy az (10)
and
tq Lo L = tq
ST 5q. |7 = sSso(U ST + V 6V + W sw) R dxdydz | (11)
95« i

Taking the variation of Egq. (10) and substracting Eq. (11)
in Hamilton's Law,



st at - %%I say |- =
to o
€ I T -
J [ Srrpo(u éu + v v + w 6w) R dx dy dz ] dt
o
= = - > - tl
- fffo(u su + v 6v + w 6w)R dx dy dz | (12)
to

Integrating the first term on the right hand side of Eq. (12)
by parts with respect to time yields,

t t
LosT ar - %Q— say 1t =
to ql tO
tl . R — -
- J [fffp(u su + v §v + w 6w)R dx dy dz]- dt
o (13)

Energy FEguation

Substituting Eqs. (9) and (13) into Eq. (12), the energy
equation (Hamilton's Law) becomes,

t . . .
st [—fffp(ﬁ su + v 8v + w sw)R dx dy dz
to

—f11(oy Sey + Oy Sey + oxy ey, )R dx dy dz

+fff(FBx su + FBy §v + Fg, 6W)R dx dy dz

+I(Fg su + Fsy 8V + Fg, 6w)dS J at = 0 (14)

B



Eq. (14) applies to non-stationary as well as stationary
motion. For the case of no external forces actlng, assume
simple harmonic motion (sin wt or cos wt or el®t will al1
yield exactly the same result in this stationary problem)

u(x,y) cos wt

u(x,y,t)
v(x,y,t) = v(x,y) cos wt
w(x,y,t) = w(x,y) cos wt (15)

Since the strain-displacement relations are linear and the
body is elastic (thus Tx(x,y,t) = ox(x,y)cos wt, Ex(x,y,t) =

ex(x,y)cos wt, and likewise for Gy, Oyxy, By, €xy)s Eq. (14)
becomes, upon substitution of Eq. (15§,

[wszfp(u su + v 6v + w éw)R dx dy dz
- fIf(ox Sex + oy ey * oxy Sexy)R dx dy dz]

t1
S coszmt dt = 0
tO (16)

Since the integral on time in Eq. (16) does not vanish for
any tj greater than tg, one must have,

wifffo(u su + v 8V + w 8w)R dx dy dz
- [//(ox Sex + oy 8ey + oxy Sexy)R dx dy dz = 0 (17)

Eq. (17) is the familiar equation of the principle of minimum
potential energy which is applicable only to stationary systems.
If the structure is symmetric about the middle surface, the
neutral surface and middle surface are coincident. Assuming
such is the case, upon substitution of Eags. (6) and (7), Eq.
(17) becomes,



2¥X1 Y1
w S f ph(u 6u + v 6v + w Sw)R dy dx

XO yO
X191
- ?i§%§7 ;7 5 [h {(ex + v €y)5€x + (ey + v ex)Gsy
X0 Yo
1-v h3
+ (__2_)_ exy Sexy} + 15 {(Kx + v Ky) oKy

+ (Ky + v KoKy + 320 Ky skyy} IR dy ax = 0 (18)

Let C = Eh/(1-v2) and D = Eh3/12(1-v2). Substitution of
Eq. (5) into Eq. (18) yields three coupled equations in u, Vv,
and w.

X1 yl
;TrTe Dluy sug + 200 Louy suy)
X0 Yo

+ (il%ﬁl % vy Suy + % Vy Suy) + (% w 8uyx)]R dy dx

le
- w2 7 flp h(u 6u)R dy dx = 0

X0 ¥0 (19)
and,
X1 Y21 -
I [% (1;531 uy 8vy + v ux §vy)
X0 YO
+ C(L vy svy + (A=V) v sv
(ﬁz y y 5 X x)
+ %%(ﬁf vy 8vy + 2(1l-v)vy 8Vy)
C

+ 2(1-v)wygy 8vy) IR dy dx

Xl Yy
- w? f flph(v V)R dy dx = 0



and,

X, ¥
171.C
I [ﬁ

c D1
(v uy &w) + =p(vy &w) - (& vy Sw
X0 Yo R y RZ2 ‘Rz 'Y yy

+ v vy Swgy + 2(1-v)vy Swgy) + %%(w 5w)

oo 1 Vv
+ D {wxx Swxx t+ v Wyy Swyy + ﬁ?cwxx SWyy

2(1-
+ wyy Swxx) + —Lﬁfﬁl wxy SWxylJR dy dx

X1 V1
- w2 f S ph(w sw)R dy dx = 0
X0 Yo (21)

Coordinate Transformation

Tf the cylinder in Fig. 3 is cut along y = w and develo-
ped in the plane (Fig. 4), the relations between x and y and
the skewed coordinates can readilly be seen. They are,

= _ X
T cos a
Rh =Ry - x tan o (22)
From the calculus,

9 - 3 3E 4, 3 2n
9X 3F 9X an 9X
8 . 3 3E 4 2 2n
3y ~ 9f 8y oy 3y (23)

Substituting Eq. (22) into Eg. (23),

10




3 1 3  ftan o 39

— e s . - ——— —

3X ~ cOs o 3F R Y
9= 2
3y an
92 _ 32
Y2 e
32 _ 1 92 , tan?a 32 _ 2 tan o _3?2
3x? cosZa 3E? R4 877 R cos a 3Fs7
32 1 82 _ tana _32
3Xdy =~ cos a JEIn R  87°
dx dy = cos o dE dn (24)

Make the following non-dimensionalizations,
n = n/y
£ = £/ (25)

where y is the half-angle at £ = 0, and ¢ is the slant length
(see Fig. 4). Substitution of Eq. (25) into Eq. (24) yields,

9 - 1 9 _ tan o 3
X 2 cos a 3§ YR an
D =13
oy Y 9n
32 _ 1 3%
dy 2 Y2 3nZ -
32 _ 1 32 . tan2a 32 _ 2 tan a 3%

oxZ  22cos2a 9E2  RZ yZ 3n?  TRytcoso 9Ean

32 _ 1 1 32 _ tan o 02
X0y 2cos o y dE3n R v2 3n2
dx dy = %ycosa dE dn (26)
11



Case of the Parallelogram

When the projection of the open circular shell in Fig.
4 is a parallelogram (a helicoidal shell), the foregoing
coordinate transformation willl yleld constant limits on the
integrals in the energy equations [Eqs. (19) - (21)] and thus
facilitate exact integration. Assuming a helicoidal shell
with constant thickness h, the following equations result
from substituting Eq. (26) into Egs. (19)-(21).

(1-v)
2

{ [ug Su, + (sinZa + cos?a)(4/Ry)2u, suy

=
o -

- sina (&/Ry)(u, sug + ug suy)] + (2/Ry)-

E(lgll cos a vg Su, + v cos a v, Sur - (2/Ry)-

n
(sin a) (cos a) il%ll vn dunl + [(2/R) v cosa w Sug

- (&/R)(&2/Ry) v cos o sin a w Gun]

- w? % (1~v2)z22cos2a [u su] }dE dn = 0 (27)
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_j_()/l {(I/Ry)[j%ﬂ—eosa u, By + v cosa u. b,
- (#/Ry)(s1na Y(cos ){lt¥) v, Svy |
+ [1 + (h/R)2/12] [(Icosa/R'y)z v, Bv,’J
+ [1+ (vr)2/3] 832 [sina /m)2 v, v,
+ v by - (fsina/Ry)(vy; By + v 5v,,)]
+ [(,QCQSG./R)Q %w sv,,] - [(h/R)2/12-y] .
[e/Bv)2(1 + (1-v)s1n2a)wnn Bv, + v W, By
- 2{//Ry) sina Wep BVp + 2(1-v) e 6v€
- 2(1-v)(4/Ry) sina w,, BVE]

2 24 52 2
- w %(l-v V4 COBG[V Sv]}d.f dn = O (28)
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-{1{} {(I/R) [v'cosa u W - ({/Ry) v cosasina u, ﬁw]

+ reosa /R)? [, o] - [(n/R)Z/12] -
[(4/8v)2(1 + (1-v)sin®a) v, tw,, + v v, o,

- 2(4/Ry) sina v, Bu, + 2(1-v) v %y
- 2(1-v)({/Ry) sina v, aw,m] + [(lcosa./R)Q w Bw]
+ [(h/R)g/l’.:’] [(R/chosa )2 Mg ¥ + (¢/Ry2cos a )2 -
Wpp BWpy + ;-15 (tan®e + v)(wpy Owgy + W By )
+ ;% (2(1-v) + 4 tana) Wen Bz = 2(£/Ry) -1—}2- .

tana tana .
cosa (M B¥en * ¥en BWnn) - 2 goga (R/YR) °

(wf.f wa,, + "fn Bw& )] -Q)Z%(l-ve)fecosga[w 5w]

} df dn = O (29)
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Por the limiting case of the flat plate in bending, Eq. (29)
reduces to the following;

[
oS

[ WEE (SWEE + (l/b)u Wnn (SWnn
¥ (s1na + v “eos a)(z/b)z(wnn' Swgyp + Wgg W)
+ [2(1-v)cosZa + 4 sinZa)(2/b)2(wg, 6wy )

- 2(2/b)3 sina (w SWegn + Wey 8Wnn)

nn
- 2(2/b) sina (wgg Swgq + wgn ngg)

- w2

4
% 12(1-v2) %5 costa w sw ] dg dn = 0 (30)

where & is the slant length of the plate and b is the half-
width (see Fig. 2).
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CHAPTER IT.
SOLUTIONS

"Boundary'conditibns

. As is well known [2], one need only satisfy geometric
boundary conditions when using the Ritz method with dis-
placement energy equations. For a cantilever boundary, the
geometric boundary conditions are,

u=0at x =0 for all y

v=0at x=0 for all y

w=0at x = 0 for all y
wy = 0 at x = 0 for all y (31)

From Eqs. (22) and (25) it follows that x 0 implies £ = 0.

Eq. (26) and the last of Eq. (31) gives,

N - tane =0at x=£& =20
Wx gcosa & Ry wn
for all y and n (32)
or,
=...—1_‘ _E{lﬁ‘_ = 0 at =E=O
Wx Lcosa "E R Yy x
for all y (32)
But since w = 0 at x = 0 for all y, wy = 0 at x = 0 for all

¥y as a result. Thus in terms of the skewed coordinates ¢
and n, Egs. (31) and (32) become,

u=0at & =0

v =0 at & 0
w=20at £ =0
0

at £ =0 : (33)
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Assumed Functlons

Using the concepts set forth in Ref. [15], direct solu-
tions to conservative, non—conservative, stationary, and
non-stationary systems of particles, rigid bodies, beams,
plates, and shells have been obtained with nothing more than
power series 1n Eq. (2). It has been the author's experience

‘that they also give more accurate answers than beam functions

for plate and shell vibration problems (beam functions place
unnecessary constraints on higher derivatives at plate and
shell boundaries for some boundary conhditions). .-~ :z: :

The geometric boundary conditions [Eq. (33)] dictate the
following double power serles.

N M
us= I Agy g1+ nJ
i=0 j=0
N M . .
v= 3 1 By gltl gl
i=0 j=0
N M . .
w = z E Cij El+2 T]J (3}4)
i=0 j=0

Eigenvalue Equations

The 6§ operator in Egs. (27)-(30) now has the following
definitions [5],

= _9du =
Su = spi Shyy = ghtl ﬁz 8AKs
dv
6V = 35, 6Bke = ghtl n2 sBy
BCkg,

where 8Akgs 6By, and 6Cky are arbitrary quantities (or
"variations"), which may .be factored out of Egqs. (27)-(30).
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The Helicoidal Shell

Upon substitution of Egs, (34) and (35) into Eqs; (27)-
(29), the following coupled algebraic equations result;

: \ i L2 .
iEO on{ Aig [Klijkg = As Mlyjied + Bijy K2ij51e

+ Cpy K31y)s } =0 for k = 0,1...,N
£ = 0,1...,M (36)
N M
2
£z { Ajj K2kpij t+ Bijy [Klijue - *s M2j3ks]
1=0 j=0
+ Cij KSijkfl } =0 for k = 0,1...,N
2 = 0,1...,M (37)
N M
B {Aij K3ke1j * Big KSpgag * Cij [Kbijke
i=0 j=0
- A5 M3y4ps] } =0 for k = 0,1...,N
24 = O,l-q-.,M (38)

where K1jj1e, K21jkes K3ijkes KH¥ijke> KSijke, KO6ijke> Mlijke,
M2ijk£ and M34:%e are given in Appendix II in terms of re-
currsion formuias which result from exact integration. Eags.
(36)-(38) form a set of 3x(N+1)x(M+l) algebraic equations in
the (3x(N+l)x (M+1)) + 1 unknown Ajj's, Bij's, Cij's, and

2 2
As (20° £ (1-v2)22c0s2a). 'They are conveniently written in the following
matrix form;

KI K2 K3 m o o7}[a
kT k4 K5 - 2% o M2 o|[}fB] =0
k3T ®5T X6 o o mllc (39)

For a non-trivial solution, the determinant of the coefficient matrix must
vanish.
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The Skewed Plate

The limiting casé of the flat plate in bending, using
Eqs. (34), (35), and (30), ylelds the following elgenvalue
equation: ‘

N M | .
I L Cyy [KByjip - Ap M335x] = O
i=0 j=0 F N
S for K = 0,1,2,...,N |
2= 0,1,2,...,M (L40)
or in matrix form,
\ {[xkB] - AjM31} {c} =0 (41) -

KBjjkg 1is given in Appendix II. Eg. (41) is a set of (N+1) X
(M+1) algebraic equations in the (N+1) X (M+1l) + 1 unknown
Cij's and rp?(=w?(ph/D)e"*cos“a). Again, to have a non-trivial
solution, the determinant of the coefficient matrix in Eq. (41)
must wvanish.
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CHAPTER ITI. .
RESULTS

The Skewed Plate.

For the sake of completeness (since the flat plate is
the limiting case of the helicoidal shell being considered)
and due to the relatively small amount of attention given
the skewed cantilever plate in the literature, plate eigen-
values and mode shapes for various aspect ratios and skew
angles wlll be presented. Comparisons of the present solu-
tion with other analytical and experimental results will be
given for the skewed plate.

Four aspect ratios (AR = £/2b) are considered: 0.5, 1.0,
2.0, 4.0. Poisson's ratio is set to a nominal value of 0.3
for all plate calculations. Also o is restricted to 0°, 15°,
30°, and 45°. Permissible ranges are 0 < AR < « and 0° < o < 90°.
The authors have made unverifled calculations for o up to 85°
without any difficulty. However, those results will not be
included since the helicoidal shell data was restricted to
0° < o < 45°, The values chosen for AR and o yield 16 possible
parameter combinations. All calculations used a 35 term double
power series for w. No loss of numerical accuracy (16 place
arithmetic was used) was apparent for the 35 x 35 matrix eigen-
value problem. As o increases, the coupling between odd and
even n terms increases, causing the computation of the eigen-
values to take longer. The total cost of the 16 eigenvalue
problems was $20.00 on the IBM 370 digital computer. Conver-
gence curves wilill not be given since only the 5 lowest modes
of each parameter combination will be given. For 35 terms,
the 5 lowest modes are converged (throughout the text the word
"converged" means that less than 0.5% change occurred in the
eigenvalues when additional terms were taken in the double
power series).

Table 1 contains the 5 lowest eigenvalues for all 16

* parameter combinations. For the data given in Table 1, eigen-
value curves may be plotted versus o, since the eigenvalues

are continuous functions of a. Plots of the eigenvalues versus
o for AR = 0.5, 1.0, 2.0, and 4.0 appear in Figs. 5, 6, 7, and
8 respectively. For AR = 0.5 and 4.0 (Figs. 5 and 8) no mode
crossing can be detected for 0° < o < 45° although nodal
patterns are altered with increasing o (see Figs. 9, 10, 11,
and 12). For AR = 1.0, Fig. 6 shows the 3rd and U4th mode
shapes reversing their order at very nearly o = 32°. Also

the 5th and 6th mode shapes reverse position at a = 38°. Thus
one frequency must generate 2 independent mode shapes at points
of intersection of 2 curves (i.e., at some precise o value).
These reversals of position in the frequency spectrum of a
given mode shape can be evidenced in the w nodal patterns
(Figs. 9-12). For AR = 2.0 only the 5th and 6th mode shapes
cross (nearly at a = 41°). As aspect ratio increases, a given
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nodal pattern may drastlcally change its position in the
frequency spectrum (see Figs. 9-12). This i1s due to the
fact that. as. AR decreases the relatlve longitudinal stiff-
ness Increases, thus causing more of the lower modes to have
longitudinal nodal lines.

Tables 2 and 3 contain comparisons of these power
serles results to experimental and other analytical results.
Aspect ratio 1s 1.0 in both tables.

a = 30° (Table 2)

Column 1 contains experimental results from References
[11] and [12]. Column 2 contains the authors' direct solu-
tion. Column 3 has analytical results due to Claassen [13],
who used 18 beam functions in a Rltz analysis. Note that
Claassen's results are all higher than the author's direct
solution. Since the Rltz method yilelds upper bounds, the
author's numbers are more converged than Claassen's [13] re-
sults. Column 4 contains experimental results given in
Reference [14]. The agreement between analysis and experi-
ment is very good consldering that 1n some instances, shakers
were used to excite the plate (shaker position can drasti-
cally affect mode shapes and thus nodal patterns, as evidenced

in Ref. [147).
a = U5° (Table 3)

Columns 1, 2, and 4 are the same as in Table 2. Column
3 contains analytical results obtained using Relssner's
theorem [15]. 1In light of the experimental data in Columns
1 and U4, and the well converged (less than 0.5% error) analy-
tical results in Column 2, some of the results in Column 3
are upper bounds and some are lower bounds. Again the
analytical results in Column 2 agree favorably with the experi-
mental results.
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"THE HELICOIDAL SHELL

_ Since there’ is no data for comparison to the cantllever
helicoidal shell, convergence of the eigenvalues must beé’
checked to establlsh their validity. In choosing the three
double power series, no preference is made for u, v, or w.
A1l three double power series are given the same number and
degree terms. For large aspect ratio higher order £ terms
are needed, whereas for smaller aspect ratios higher order n
terms are needed 16 place arithmetic is used throughout '
the calculations. For the largest number of terms taken (30
terms in each series; a 90 x 90 matrix eigenvalue problem)
no loss of accuracy was noted.

First a simple configuration (%/R = 0.2, h/R = 0.01,
a = 0°, and vy = 0.1 rad) was checked. For the helicoidal
shell aspect ratio is AR = &/2Ry. In this particular case
AR = 1.0. Convergence curves for the first 5 eigenvalues
appear in Fig. 13. The first 4 modes are converged after
only 16 terms (48 x 48 matrix) and all 5 are converged at 24
terms (72 x 72 matrix). Next, the same shell with o = 45°
was checked. The convergence curves are given in Fig. 14.
For 24 terms all 5 eigenvalues are very close (within 1.5%)
to the converged numbers of 30 terms. As a last example, an
aspect ratio 4.0 shell (&/R = 0.8, h/R = 0.01, ¢ = 15° and
vy = 0.1 rad) was checked. Convergence curves are shown in
Fig. 15. Again 24 terms yield results within 2% of the con-
verged numbers of 30 terms. Convergence of other examples,
such as small aspect ratio (large y), have been.checked but
will not be included, since the results are virtually the
same as the three cases presented. Of course it would be
desirable to run all cases with 30 ferms to assure converged
numbers. For a 24 term run (72 x 72 matrix), the average
cost on the IBM 370 digital computer was $10.00. Thus, as
a matter of economy, and in order to present the widest range
of data possible, all results presented will be for 24 or 25
terms. As has been shown, the eigenvalues for 24 terms are
within 2% of the converged numbers of 30 terms.

The geometric parameters are %2/R, h/R, o and y. Poisson's
ratio was set to a nominal wvalue of 0.3 for all calculations.
For thin shell theory h/R i1s usually taken in the range
0<h/R<0.05. This is in keeping with the approximations made
in the derivation of the thin shell equations. In this paper
only h/R in the range 0.005<h/R<0.05 will be considered.

Also a will be restricted to O<a<w/l4 and y to 0.1 rad <y<0.7
rad. Permissible ranges for o and y are of course 0<a<m/2
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and 0 < y < n. The permissible range for 2/R is 0 < &/R < o,
But again, in order to limit the enormous amount of possible
parameter combinations, %/R is taken in the range O.liz/RiO.S.
In order to observe. the effects of a given parameter, all
other parameters are fixed at values which could represent a
typical shell.

Effect of h/R

For o = 0°; ¢/R = 0.2; vy = 0.1 rad

The aspect ratio for this case is 1.0. For small R/h
(= 20), the primarily bending modes (denoted by Bj, Bo,...)
have relatively high frequencies. Also one encounters prima-
rily membrane modes (denoted by Mj, M2,...) much earlier in
the spectrum. But as R/h increases, the frequencies of the
primarily bending modes decreases rapidly (see Fig. 16).
Since the frequencies of the primarily membrane modes change
very little with R/h, they appear later and later in the
spectrum due to the rapid decrease in the bending mode eigen-
values.

For o = 30°, #8/R = 0.2; v = 0.1 rad

The trend of the eigenvalues versus R/h remains the same
with this change in o (see Fig. 17). The eigenvalue for the
M1 mode is consistantly lower for a = 30° than for o = 0°.
Also the eilgenvalues for By and Bg are consistantly lower for
o = 30° than for a = 0°. For o = 30°, modes B3 and Bl are
very close in frequency versus R/h, although the mode shapes
differ considerably.

Effect of «

For &¢/R = 0.2; h/R = 0.01; y = 0.1 rad

The aspect ratio is 1.0. Table L contains the first 5
eigenvalues for o = 0°, 15°, 30°, and 45°. Also included are
the relative amounts of bending strain energy and membrane
strain energy, and the generalized mass. The eigenfunctions
were normalized in such a way as to make the generalized mass
be between 1.0 and 10.0._. The generalized stiffness (total
strain energy) is then Ag X generalized mass. The generalized
mass and stiffness would be used in calculating transient
motion of the shell by the normal coordinate technique. If a
mode has more than 60% of the strain energy due to membrane
energy, it is consldered a primarily membrane mode, denoted by
M. If more than 60% of the strain energy is due to bending,
it is considered a primarily bending mode, denoted by B.
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If neither is more than 60%, the mode is denoted by B-M or
M-B, the first letter indlcating which is greater in magni-
tude. Eilgenvalues will not be graphed versus the remaining
geometric parameters. Thls 1s because mode shapes and fre-
quencies change rapildly and. it becomes very difficult to draw
curves for the 5 lowest modes. Rather, the 5 lowest eigen-
values will be given in tabular form along with figures
showlng the w nodal patterns. For the present case, w nodal
patterns appear in Fig. 16. The. 1st and 2nd mode shapes can
be easily followed versus a. The 3rd and 4th modes, however,
cross between a = 30° and 45°. Also between 30° and 45°, a
bending mode crosses a membrane mode (5th mode).

For /R = 0.8; h/R = 0.01; y = 0.1 rad

The aspect ratio is 4.0. Eigenvalues and energy percent-
ages are given in Table 5. In Fig. 19 the first 3 modes can
easily be followed versus a. However, the Uth and 5th modes
are difficult to follow. At o = 15°, the U4th and 5th mode w
nodal patterns are very nearly the same. Yet, the relative
magnitudes and/or shapes of u and v may be entirely differ-
ent. This fact will be i1llustrated in a later section. After
o = 15°, the Uth and 5th modes seem to retain their position
in the frequency spectrum.

Effect of v

For &/R = 0.8, h/R = 0.01; y = Q°

The aspect ratio varies with y (AR = 2/2Ry). Eigenvalues
and strain energy percentages are given in Table 6. w nodal
patterns appear in Fig. 20. For y = 0.1 rad, the w nodal
patterns are very similar to those for the flat plate. As ¥
increases, the relative longitudinal stiffness increases caus-
ing two things to occur: first, more longitudinal node lines
appear in the lower modes, and second, the membrane energy for
‘the lower modes increases considerably. It is almost impossible
to follow a given nodal pattern versus y. Although one or two
deflection components may have the same (or similar) nodal
patterns for different nodes, the third component may have a
very different nodal pattern for the two modes. This is
illustrated by modes 2 and 3 for y = 0.7 rad. Even though the
w nodal patterns are different, u and v have similar nodal
patterns (see Fig. 21). The relative magnitudes of u, v, and
w are also similar for the two modes shown in Fig. 21. Upon
close inspection, although u and v nodal lines are similar,
thelr positioning is different.
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For %/R = 0.8; h/R = 0.01; o =.30°

Aspect ratio varies wilth vy as noted before. Eigenvalues
and stralin energy percentages are glven in Table 7. w nodal
patterns are shown in Flg. 22. Modes 1, 2, and 3 seem to
follow an orderly progression from vy = 0.1, 0.3, 0.5, to 0.7,
with each increase in y bringing an additional longitudinal node
line. As previously mentioned, this is a result of the rela-
tive increase of the longitudinal stiffness. Modes 4 and 5 are
difficult to follow. Mode U4 seems to follow the trend of in-
creasing number of longltudinal node lines with increasing vy.
At vy = 0.5 rad, modes. ! and 5 have similar w nodal patterns;
but, u and v nodal patterns may be quite different.

Effect of /R

Por h/R = 0.0l a = 0; v = 0.1 rad

The aspect ratio (AR = &/2Ry) varies since ¢/R variles.
Eigenvalues and strain energy percentages are shown 1n Table
10. w nodal patterns are shown in Fig. 23. Unfortunately,
Fig. 23 is somewhat distorted. vy is fixed at 0.1 rad, so as
L/R decreases, the length of the planforms should decrease.
Instead, the length of the planform has been fixed at one
unit and the width (2yR/%) thus increases as /R decreases.
Except for one membrane mode each in &/R = 0.8 and 0.4, all
other modes shown are primarily bending modes. As AR de-
creases (%/R decreasing), the relative longitudinal stiff-
ness increases, with the result that more of the lower modes
have longitudinal node lines. Notice the similarity in
Fig. 23 and the analogous flat plate in Fig, 9. The w nodal
patterns are identical with the exceptions of mode 5 for
AR = 2.0 and modes 4 and 5 for AR = 4.0.

For h/R = 0.01; a = 30°; vy = 0.1 rad

Again the aspect ratio varies with 2/R. Eigenvalues and
strain energy percentages are given in Table 9. w nodal
patterns are shown in Fig. 24. Fig. 24 has the same distort-
ions as Fig. 23. The 1st and 2nd modes can be followed easily
as AR decreases (%/R decreasing). As before, more of the lower
modes have longitudinal nodal lines as AR decreases. Note the
similarity to the flat plate nodal patterns (Fig. 11). The
reason for the similarity is the shallowness (y = 0.1 rad) of
this particular shell.
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CONCLUDING REMARKS

Free vibration modes and frequencies have been presented
for both the cantilever skewed plate and cantilever helicoidal
shell with variations of all geomefric parameters. From the
convergence curves in the case of the shell, and from experi-
mental and other analytical results in the case of the plate,
the authors feel that the results are numerically sound.

The shell results point up the serious problems which
confront the designer. That 1s the question of what the first
few mode shapes are. It is impossible (especially for large vy
in the case of the shell) to guess at the mode shapes in order
to get a 1 or 2 term Rayleigh-Ritz solution that will yield
anything close to the true fundamental frequency. In short,
anticipating the mode shapes of the helicoidal shell is not
feasible. As R/h increases, the spacing between shell eigen-
values rapidly decreases, causing mode excitation, identifica-
tion, and resolution to be very difficult for the experimenta-
list. Also as o and y increase, nodal patterns change drasti-
cally, thus furthering the problem of mode identification. At
some a values two mode shapes exist for one frequency, for both
the plate and shell. Positions of given nodal patterns in the
frequency spectrum are altered drastically with changes in
aspect ratio for the plate and shell.

It is felt that this paper represents a third step toward
the analytical solution to the flutter of the thermally stressed
turbine blade. The first and second steps are represented in
Refs. 2 and 16 respectively. The turbine blade, immersed in
a non-steady fluid flow field and a non-steady structural
acceleration field, poses a challenging problem for an analy-
tical solution. The Ritz method, when power series are pro-
perly employed with finite time intervals and finite space
intervals in Hamilton's Law of Varying Action, appears to offer
a direct method of attack on this and other most difficult

problems.
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APPENDIX I

COMPARTSON TO EXACT SOLUTIONS FOR SPHERICAL CAPS
AND THE COMPLETE CONICAL SHELL

A literature search was made including the Applied
Mechanics Reviews, Index to Contemporary Acoustical Literature
published by the Acoustical Society of America, a computer
survey from NASA Langley Research Center, and the NASA mono-
graphs, "Vibration of Plates" and "Vibration of Shells" by
A. W. Leissa [1], [17]. No exact solution exists for the
skewed cantilever plate or for the cantilevered helicoidal
shell [17]. No numerical results from either calculation or
experiment, were found in the literature on the vibration
modes and frequencies of the cantilevered helicoidal shell.
However, comparison of calculations by the authors, using power
series, have been made to the "exact" solutions for two other
shell geometries and are given below.

The Deep Spherical Shell

The exact solution for the deep spherical shell is given
in terms of Legendre functions of the first kind b% Kalnins
[18] and Kraus [19]. In the exact solution, (h/R)2/12 has
been neglected in comparison to unity, in order to arrive at
a solvable differential equation (this is in keeping with the
approximations made in thin shell theory). 1In the present
analysis (h/R)2/12 was retained.

For axisymmetric motion (i.e., only u and w deflections
present), Kalnins [18] has given eigenvalues for various
boundary conditions. In the direct solution by the authors,

a 10 term power series was used for both u and w. A compari-
son of results for a clamped base and a free base is given 1in
Table 1 of this Appendix. The agreement is quite evident.

The reason the direct solution (shown by Ritz [4] to be an
upper bound for stationary problems) yields a lower eigenvalue
for the first few modes than the exact solution, is felt to be
that the differential equations that would be obtained from
the energy equation are slightly different than the different-
ial equations of Ref. [17] due to the neglect of (h/R)2/12 in
comparison to unity.
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TABLE 1. DEEP SPHERICAL SHELL

\
\
/

AXxisymmetric Motion

h/R=0.05 , v=0.3 , ¢,=60°

" = wRP/E"
Mode No. Free Base Clamped Base
’ © 0.931% 1.006
[0.9308]° [1.0056]
5 1.088 1.391
[1.088]) (1.391]
3 1.533 1.697
(1.5336] (1.6963)
4 2.348 2.375
[2.3488] (2.3746]
5 2.544 3.486
[2.5478) [3.4872]
s 3.497 3.991
{3.5346] (3.9907]
7 4,951 4,974
(5.0956] (4.9792]

a. unbracketed numbers due to Kalnins [18]
b.[ J1,bracketed numbers from author’s direct
solution '

28




The Complete Cone

Due to the geometric singularitles at the apex, the com-
plete conlcal shell has recelived llttle treatment by the Riltz
method, and limited exact solution. ' Neglecting tangentilal
inertia (U = 0), an exact solution has been obtained by using
Airy's stress function and the method of Frobenius [20].
Dreher [20] used the Donnell-Mushtari shell equations. The
author used Novozhilov's straln-displacement relations to
obtain the direct solution of the free base case, with and
without tangential inertia. Reference [20] gave numerical
results for the clamped and free base. A comparison of results
is given in Table 2 of this Appendix. The small difference in
the frequencies from the exact solution and the direct solu-

- tlon, when tangential inertia was neglected, is probably due
to the fact that slightly dlfferent equations were solved.

The result of neglecting tangential inertia has the predictable
effect of raising the natural frequencies since mass 1s effec-
tively taken out of the system (or conversely, constraints
have been added).
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TABLE 2. CONICAL SHELL

Axisymmetric Motion

A% 24.25 p =0.000254 Ib-sec’/in*
v =0.3 B - 600 :
7 .
E = 10" psi N*=12(1-v3)U7h)/tan’8
h=O-4626ln :104
Frequency ,h Hz
Ne i . . .
Mode glecting U In.cludmg u
NO. Exact Solution, Direct Solution, | Direct Solution,
Ref. [20] author author
1 912.36 912.35 891.47
2 1322.53 1322.60 1269. 34
3 1823.71 1828.55 1746.54
4 2414,.92 2410. 31 2310.01
5 3122.80 3264,53 2987.97
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K513Kg = (&(cos a)/R)2 I8 q0/v - ((h/R)2/(12Y)) °
{(R/Ry)2(2+(1-v)s1n?a) 194 g9 + v T104 g5
- 2(2/Ry)(s1in @) I1ly4q + 2(1-v) T124 45y
- 2(1-v)(R/Ry)(sin a) I1344xp}

K61 g = (4/R )2 T4y gy (cos®a) + ((n/R)%/12) -
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T161 kg + (tan®a + v) Il713kg/W2
+ (2(1-v)+4tan®a) T184 g0/v2 - 2(4/Ry) -
(tan a) I194 jix4/v2(cos a) - 2(tan a) -
(R/27) 120131(1/(“33 a.)}

KBg gy = I15qgxp + (2/0)t T164 yic9 + (sin2a+vecos®a)-
(2/v)2 T174 3% + (2(1~v)cos2a+leina) -
(I/b)g 118131{! - 2(1/b)3(81n a) I194 jxa
- 2(2/b)(sin a) 1204 g1y
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TABLE 1.

SKEWED PLATE

EIGENVALUES

£/b=1.0; v=03;AR =05 4/b=20; v=03:AR =10
Mode Ap= wVph/D’ fcosa Mode Ap= wVph/D’ fcos’a
No. a=0 a=15° a=30° a=45 No. a=0° a=15° a=30° a=45°
1 3.4948 3.3961 3.0496 2.3547 1 3.4746 3.3478 2.9522 2.2688
2 5.3583 5.1684 4.6976 4.1826 2 8.5141 8.1242 7.0878 5.6992
3 10.1868 9.7192 8.4568 6,7270 3 21.3010 20.7595 19.0494 13.6363
4 19.6377 18.5128 15.4916 11.3675 4 27,2027 24,5838 19,4758 16.0858
5 21.8506 21,3351 15.3757 15.6528 5 30.9848 31.6375 31,1425 25.7958
£/b=40; v=03:AR =20 R/b=80; »=03:AR =40
IMode 7\p= wVph/D’ ficos*a Mode )\p= wVph/D fcos*a
No. @=0 «=15° a=30° x=45° No. @=0° x=15° a=30° @=45"°
1 3. 4468 3.2803 2,7952 2,0489 1 3.4214 3.2254 2.6771 1.8925
2 14,8144 14,0529 11.9629 9.0208 2 21.3638 19.9221 16.1927 11.2502
3 21.4609 20.8552 18.9474 15. 6994 3 27,5833 .27.0763 25.2054 21,5965
4 48.2295 44,2789 35.4095 25.0949 4 61,5278 57.4526 46.9855 33.1829
5 61,7164 61.0880 57.2594 45.9879 5 85.2098 83.7205 78.3589 67.5967




- TABLE 2. SKEWED PLATE EIGENVALUES

a

6¢

30°; v=03:AR =1.0

\p= wVph/D’ fcos*a

Mode |
No. Experiment, Direct Solution, Beam Functions, . Experiment,
Refs. [11], ['2] Beres Claessen [13] Ref. [14]

1 2.87 2.9522 2.96 2.97
2 6.92 7.0878 7.4 6.95
3 18.38 19.04gh 19.1 18.57

4 19.15 19.4758 19.6 19.82

5 30.48 31,1425 31.8
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TABLE 3. SKEWED PLATE EIGENVALUES

o

a=45; v=03 ;AR =10

Ap= wVph/D fcos*a

Mode |

No. Experiment, Direct Solution, |Reissner's Theorem, Experiment,
Refs. (11], [12] Beres Ref. [15] Ref. [14]
1 2.13 2.2688 2.06 2.31
2 5.53 5.6992 5.63 5,48
3 13.26 13.6363 13.86 13.31
4 15. 06 | 16.0858 S 15.90
5 25.09 25,7958
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TABLE 4.

HELICOIDAL SHELL EIGENVALUES

A/R=02 h/R=0.01 v =03 7=0-1 rad
o ]
a=0 a =15
Mode AS= A % of strain | % of strain | generalized Mode ;\s= [Ax °% ot strain | % of strain | generalized
No. energy due | energy due mass No energy due | energy due mass
{pl1- VIVE fcose| to membrane | to bending " |Ypl- VA/E fcosx| to membrane | to bending
1 0.055033 16.99 83.01 9.1242 1 0.054025 14,07 85.93 1.3454
2 0.12315 0.40 99.60 1.6942 2 0.12266 2.06 97.9% 1.2092
3 0.31920 6.17 93.83 9.0570 3 0.32124 5.35 94.65 2,9140
4 0.39806 0.79 99.21 6.5230 4 0.37089 0.45 99.55 1.1622
5 0. 45040 0.63 99.37 3.0463 5 0.48135 1.26 98,74 8.9363
(] ]
@ =30 a =45
Mode 15‘ W - °k of strain | % of strain | generalized Mode Ag= @+ % of strain | % of strain | generalized
No energy due | energy due mass No energy due | energy due mass
" |[p@-VI/E fcosx| to membrane | to bending " [{p{1-VA/E fcose| to membrane | to bending
1 0.051386 7.86 92.14 5.4171 1 0.046954 2.50 97.50 1.1615
2 0.12108 4,62 95.38 6.7129 2 0.11846 4,64 95.36 1.1419
3 0.32675 2,29 97.71 4.6053 3 0.28031 .91 99.08 7.0787
4 0.33108 1.63 98.37 4.5698 4 0.33110 1.81 98,19 1.4521
5 0.53356 10.22 89.78 1.5491 5 0.45252 98.27 1.73 4.0290
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TABLE 5.

HELICOIDAL SHELL EIGENVALUES

A/R=0-8 h/R=0.01 v =0.3 v =0.1 rad
o
a=0 a=15
Mode < . °b of strain % of strain eneralized Mode = . °k of strain % of strain eneralized
g% W g 5= W
No enerqy due | energy due mass No energy due | energy due mass
" Wp(- VI/E fcosx| to membrane | to bending " [{p(-VA/E fcosx| to membrane | to bending
1 0.013817 20.41 79.59 6.4158 1 0.013123 15.63 84.37 1.0263
2 0.085751 19.30 80.70 2.1607 2 0.078118 13.04 86.96 3.3733
3 0.099644 0.33 99.67 3.9252 3 0.10304 5.78 9l 22 2,2918
4 0.23240 99.91 0.09 5.9594 4 0.21436 49.33 50.67 3.7436
5 0.24289 16.69 83.31 2.6617 5 0.23223 60.25 39.75 1,2606
o
« =30 @ =45°
Mode ;\5= AL % of strain % of strain generalized Mode ks= AL °b .of strain % of strain generalized
energy due | energy due mass energy due | energy due mass
No. . No. .
Yp(- V/E fcosx| to membrane | to bending VpO-VV/E fcosx| to membrane | to bending
1 0.011659 7.73 92,27 1.9527 1 0.009890 3.54 96,46 4,7196
2 0.064690 9.42 90.58 2.8079 2 0.050025 10.84 89.16 3.7014
3 0.10389 10.48 89.52 6.6308 3 0.087251 17.06 82.94 1.2557
4 0.18166 46.00 54,00 2.14239 4 0.15069 28,53 7,47 2.9546
S 0.22456 46.95 53.05 8.2090 5 0.20298 41,29 58.71 3.1705
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TABLE 6.

HELICOIDAL SHELL EIGENVALUES

/(/R=O8 h/R=OO1 y=o-3 a=o°
¥=0.1 rad v=0.3 rad
Mode Ag= @+ °% of strain | % of strain | generalized Mode As‘ - °% of strain | % of strain | generalized
No energy due ! energy due mass No energy due | energy due mass
" [{p0-VWE fcosa| to membrane | to bending " |YpU- V/E fcos«| to membrane | to bending
1 0.013817 20.41 79.59 6.4158 1 0.042681 18.11 81.89 2.1815
2 0.085751 19.30 80.70 2.1607 2 0.052883 89.74 10,26 1.3872
3 0.099644 0.33 99.67 3.9252 3 0.15929 30.59 69.41 3.6941
4 0.23240 99.91 0.09 5.9594 4 0.15974 8.51 91.49 1.5465
5 0.24289 16.69 83.31 2.6617 5 0.20723 18.07 61.93 3.7834
7 =0.5 rad v=0.7 rad
Mode As= AL °% of strain | % of strain | generalized Mode AS= w " % of strain | % of strain | generalized
No energy due | energy due mass No energy due | energy due mass
1p0~VE fcosa| to membrane | to bending " |¥p0-VVE fcosx| to membrane | to bending
1 0, 049641 69.01 30.99 2.6810 1 0.053481 48.87 51.13 2.1032
2 0.061378 18.17 81.83 1.3951 2 0.066911 56.84 43.16 6.3277
3 0,14914 89.96 10,04 1.5511 3 0.13920 53,49 46,51 1.7002
4 0.17898 33.19 66.81 9.4340 4 0.18983 36.29 63.71 2.8389
5 0.17959 39.35 60.65 9.561k4 5 0.20016 61.72 38.28 1.6372
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TABLE 7. HELICOIDAL

SHELL EIGENVALUES

A/R=0-8 h/R=0.01 v =0.3 a =30°
v=0-1 rad 7=0-3 rad
Mode A5= W °% ot strain | % of strain | generalized Mode As= AL ° of strain | % of strain | generalized
No energy due | energy due mass No energy due | energy due mass
" [e(1- VV/E fcosa| to membrane | to bending " [Wp(-VV/E fcosx| to membrane | to bending
1 0.011659 7.73 92.27 1.9527 1 0.019676 21.59 8.4 1,031
2 0.064690 9.42 90.58 2,8079 2 0.069371 50. 4l 49,56 1.7562
3 0.10389 10.48 89.52 6.6308 3 0.12406 31.37 68.63 1,7545
4 0.18166 46. 00 54.00 2,4239 4 0.15527 28.02 71.98 3.8605
5 0.22456 46.95 53.05 8.2090 5 0.24472 31,03 68.97 3.8958
7=0.5 rad 7=0-7 rad
Mode Ag= - °% of strain | % of strain | generalized Mode PIECAY ° of strain ( % of strain | generalized
No energy due | energy due mass No energy due | energy due mass
" [{pO-V/E fcosx| to membrane | to bending " [YpU-A/E fcosx| to membrane | to bending
1 0.023129 23.54 76.46 1.6050 1 0.025434 32.31 67.69 1.1878
2 0.082180 h2.44 57.56 3.5571 2 0.094740 47,98 52.02 7.1253
3 0.13052 32.89 67.11 6.0257 3 0.13u82 68.49 31.51 1,6844
4 0.14811 83.05 16.95 2.5619 4 0.14516 4y, 22 55.78 1.8861
5 0.16823 39.59 60,41 2.2914 5 0.20398 66.83 33.17 1.6626
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TABLE 8. HELICOIDAL SHELL EIGENVALUES

h/R=0.01 v 203 a=0 v=0.1 rad
A/R=01 A/R=0.2
Mode AS= - °% of strain | % of strain | generalized Mode AS= AR % of strain | % of strain | generalized
No energy due | energy due mass No energy due | energy due mass
" [fp-VA/E fcosx| to membrane | to bending Ve VVE fcosx( to membrane | to bending
1 0.10619 9.75 90.25 1.1958 1 0.055033 16.99 83.01 9.1242
2 0.15516 0.67 99.33 1.0221 2 0.12315 0.40 99.60 1.6942
3 0.29847 0.49 99.51 8.8834 3 0.31920 6.17 93.83 9.0570
4 0.56742 0.15 99.85 3.5975 4 0.39806 0.79 99.21 6.5230
5 0.63881 1.19 98.81 1.6759 5 0,45040 0.63 99.37 3.0463
A/R=0.4 A/R=0.8
Mode| . Aq= co- °%% ot strain | % of strain | generalized Mode A= @ - °6 of strain | % of strain | generalized
No energy due | energy due mass No energy due | energy due mass
" |{p0-A7E fcosx| to membrane | to bending " [{pl-VWE fcosx| to membrane | to bending
1 0.02769 19.53 80.47 2.1162 1 0.013817 20.81 79.59 6.4158
2 0.10712 0.29 99.71 1.6425 2 0.085751 19.30 80.70 2.1607
3 0.16787 15.08 84.92 2,3493 3 0.099644 0.33 99.67 3.9252
4 0.35020 0.49 99.51 2,7004 4 0.23240 99.91 0.09 5.9594
5 0.51555 99.97 0.03 2.2949 5 0.24289 16.69 83.31 2.6617
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.TABLE 9. HELICOIDAL SHELL EIGENVALUES

. h/R=0.01 v =0.3 a =30° v=01 rad
' A/Ra0 A/R=0.2
Mode Ag= Q- ° of strain |-% of strain | generalized Mode As= @ °k ot strain | % of strain | generalized
No energy due |.energy due mass No energy due | energy due mass
" p(-VW/E fcosx| to membrane | to bending " [{p(=-A/E fcosx| to membrane | to bending
1 0.10377 3.80 96.20 1.3865 1 0.051386 7.86 92,14 5.4171
2 0.15990 k.03 95.97 9-5907 2 0.12108 4.62 95.38 6.7129
3 0.28535 0.40 99.60 2.4998 3 0.32675 2,29 97,71 4,6053
4 0.52231 0.16 99.84 1.5343 4 0.33108 1.63 98.37 'u.slsgs
5 0.65908 1.07 98.93 2.0466 5 0.53356 10.22 89,78 " Lsug1
A/R=0-4 A£/R=0.8
Mode Ag= @+ °% of strain | % of strain | generalized Mode Ag= @+ | % of strain’{ % of strdin | generalized
No energy due | energy due mass No energy due | energy due mass
"~ - VA/E fcosee| to membrane | to bending - Wp- VI/E fcosx| to membrane | to bending
1 0.024325 7.86 92.14 . 1,5070 1 0.011659 7.73 92,27 1.9527
2 0.10082 5.09 94,91 4.6684 2 0.064690 9.42 90,58 2.8079
3 0.16408 7.83 92,17 1.5731 3 0.10389 10.48 89,52 6'.6308
) 0.29471 9.75 90.25 3.8707 4 0.18166 46.00 54,00 2.4239
5 0.35614 92,90 7.80 3.2429 5 0.22456 46.95 53.05 8.2090
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Figure 1. Helicoidal Shell
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FIGURE 3. RIGHT CIRCULAR
CYLINDER WITH
COORDINATE SYSTEM
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FIGURE 4. RIGHT CIRCULAR
CYLINDER CUT ALONG y=
AND DEVELOPED INTO THE
PLANE , SHOWING THE HELI-
COIDAL SHELL AND SKEWED
COORDINATE SYSTEM
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FIGURE 13. CONVERGENCE OF EIGENVALUES
FOR HELICOIDAL SHELL
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0.4~ I/R=0-8 h/R=0.01, a=15", ¥Y=0-1rad
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FIGURE 15. CONVERGENCE OF EIGENVALUES

FOR HELICOIDAL SHELL
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