224 research outputs found

    Faraday rotation: effect of magnetic field reversals

    Full text link
    The standard formula for the rotation measure, RM, which determines the position angle, ψ=RMλ2\psi={\rm RM}\lambda^2, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ\Delta\psi needed to correct this omission. In contrast with a result proposed by \cite{BB10}, Δψ\Delta\psi is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.Comment: 25 pages 1 figure, accepted for publication in The Astrophysical Journa

    Electrodynamics of Magnetars: Implications for the Persistent X-ray Emission and Spindown of the Soft Gamma Repeaters and Anomalous X-ray Pulsars

    Get PDF
    (ABBREVIATED) We consider the structure of neutron star magnetospheres threaded by large-scale electrical currents, and the effect of resonant Compton scattering by the charge carriers (both electrons and ions) on the emergent X-ray spectra and pulse profiles. In the magnetar model for the SGRs and AXPs, these currents are maintained by magnetic stresses acting deep inside the star. We construct self-similar, force-free equilibria of the current-carrying magnetosphere with a power-law dependence of magnetic field on radius, B ~ r^(-2-p), and show that a large-scale twist softens the radial dependence to p < 1. The spindown torque acting on the star is thereby increased in comparison with a vacuum dipole. We comment on the strength of the surface magnetic field in the SGR and AXP sources, and the implications of this model for the narrow measured distribution of spin periods. A magnetosphere with a strong twist, B_\phi/B_\theta = O(1) at the equator, has an optical depth ~ 1 to resonant cyclotron scattering, independent of frequency (radius), surface magnetic field strength, or charge/mass ratio of the scattering charge. When electrons and ions supply the current, the stellar surface is also heated by the impacting charges at a rate comparable to the observed X-ray output of the SGR and AXP sources, if B_{dipole} ~ 10^{14} G. Redistribution of the emerging X-ray flux at the ion and electron cyclotron resonances will significantly modify the emerging pulse profile and, through the Doppler effect, generate a non-thermal tail to the X-ray spectrum. The sudden change in the pulse profile of SGR 1900+14 after the 27 August 1998 giant flare is related to an enhanced optical depth to electron cyclotron scattering, resulting from a sudden twist imparted to the external magnetic field.Comment: 31 January 2002, minor revisions, new section 5.4.

    Understanding the Geometry of Astrophysical Magnetic Fields

    Full text link
    Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13 (RM/rad m^-2)^(1/4) (B/G)^(1/2) MHz, the character of Faraday rotation changes, entering what we term the ``super-adiabatic regime'' in which the rotation measure is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing rotation measures at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, nu_SA, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of nu_SA range from 10 kHz to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved AGN, including the black holes at the center of the Milky Way (Sgr A*) and M81, nu_SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.Comment: 13 pages, 5 figures, submitted to Ap

    Resonant Cyclotron Radiation Transfer Model Fits to Spectra from Gamma-Ray Burst GRB870303

    Get PDF
    We demonstrate that models of resonant cyclotron radiation transfer in a strong field (i.e. cyclotron scattering) can account for spectral lines seen at two epochs, denoted S1 and S2, in the Ginga data for GRB870303. Using a generalized version of the Monte Carlo code of Wang et al. (1988,1989b), we model line formation by injecting continuum photons into a static plane-parallel slab of electrons threaded by a strong neutron star magnetic field (~ 10^12 G) which may be oriented at an arbitrary angle relative to the slab normal. We examine two source geometries, which we denote "1-0" and "1-1," with the numbers representing the relative electron column densities above and below the continuum photon source plane. We compare azimuthally symmetric models, i.e. models in which the magnetic field is parallel to the slab normal, with models having more general magnetic field orientations. If the bursting source has a simple dipole field, these two model classes represent line formation at the magnetic pole, or elsewhere on the stellar surface. We find that the data of S1 and S2, considered individually, are consistent with both geometries, and with all magnetic field orientations, with the exception that the S1 data clearly favor line formation away from a polar cap in the 1-1 geometry, with the best-fit model placing the line-forming region at the magnetic equator. Within both geometries, fits to the combined (S1+S2) data marginally favor models which feature equatorial line formation, and in which the observer's orientation with respect to the slab changes between the two epochs. We interpret this change as being due to neutron star rotation, and we place limits on the rotation period.Comment: LaTeX2e (aastex.cls included); 45 pages text, 17 figures (on 21 pages); accepted by ApJ (to be published 1 Nov 1999, v. 525

    A Chandra Search for Coronal X Rays from the Cool White Dwarf GD 356

    Full text link
    We report observations with the Chandra X-ray Observatory of the single, cool, magnetic white dwarf GD 356. For consistent comparison with other X-ray observations of single white dwarfs, we also re-analyzed archival ROSAT data for GD 356 (GJ 1205), G 99-47 (GR 290 = V1201 Ori), GD 90, G 195-19 (EG250 = GJ 339.1), and WD 2316+123 and archival Chandra data for LHS 1038 (GJ 1004) and GD 358 (V777 Her). Our Chandra observation detected no X rays from GD 356, setting the most restrictive upper limit to the X-ray luminosity from any cool white dwarf -- L_{X} < 6.0 x 10^{25} ergs/s, at 99.7% confidence, for a 1-keV thermal-bremsstrahlung spectrum. The corresponding limit to the electron density is n_{0} < 4.4 x 10^{11} cm^{-3}. Our re-analysis of the archival data confirmed the non-detections reported by the original investigators. We discuss the implications of our and prior observations on models for coronal emission from white dwarfs. For magnetic white dwarfs, we emphasize the more stringent constraints imposed by cyclotron radiation. In addition, we describe (in an appendix) a statistical methodology for detecting a source and for constraining the strength of a source, which applies even when the number of source or background events is small.Comment: 27 pages, 4 figures, submitted to the Astrophysical Journa

    Atomic wave packet dynamics in finite time-dependent optical lattices

    Full text link
    Atomic wave packets in optical lattices which are both spatially finite and time-dependent exhibit many striking similarities with light pulses in photonic crystals. We analytically characterize the transmission properties of such a potential geometry for an ideal gas in terms of a position-dependent band structure. In particular, we find that at specific energies, wave packets at the center of the finite lattice may be enclosed by pairs of band gaps. These act as mirrors between which the atomic wave packet is reflected, thereby effectively yielding a matter wave cavity. We show that long trapping times may be obtained in such a resonator and investigate the collapse and revival dynamics of the atomic wave packet by numerical evaluation of the Schr\"odinger equation

    Annihilation Emission from the Galactic Black Hole

    Full text link
    Both diffuse high energy gamma-rays and an extended electron-positron annihilation line emission have been observed in the Galactic Center (GC) region. Although X-ray observations indicate that the galactic black hole Sgr A∗^* is inactive now, we suggest that Sgr A∗^* can become active when a captured star is tidally disrupted and matter is accreted into the black hole. As a consequence the galactic black hole could be a powerful source of relativistic protons. We are able to explain the current observed diffuse gamma-rays and the very detailed 511 keV annihilation line of secondary positrons by p−pp-p collisions of such protons, with appropriate injection times and energy. Relativistic protons could have been injected into the ambient material if the black hole captured a 50M⊙_\odot star at several tens million years ago. An alternative possibility is that the black hole continues to capture stars with ∌\sim1M⊙_\odot every hundred thousand years. Secondary positrons produced by p−pp-p collisions at energies \ga 30 MeV are cooled down to thermal energies by Coulomb collisions, and annihilate in the warm neutral and ionized phases of the interstellar medium with temperatures about several eV, because the annihilation cross-section reaches its maximum at these temperatures. It takes about ten million years for the positrons to cool down to thermal temperatures so they can diffuse into a very large extended region around the Galactic center. A much more recent star capture may be also able to account for recent TeV observations within 10 pc of the galactic center as well as for the unidentified GeV gamma-ray sources found by EGRET at GC. The spectral difference between the GeV flux and the TeV flux could be explained naturally in this model as well.Comment: Accepted by ApJ on March 24, 200

    On the Possibility of the Detection of Extinct Radio Pulsars

    Full text link
    We explore the possibilities for detecting pulsars that have ceased to radiate in the radio band. We consider two models: the model with hindered particle escape from the pulsar surface (first suggested by Ruderman and Sutherland 1975) and the model with free particle escape (Arons 1981; Mestel 1999). In the model with hindered particle escape, the number of particles that leave the pulsar magnetosphere is small and their radiation cannot be detected with currently available instruments. At the same time, for the free particle escape model, both the number of particles and the radiation intensity are high enough for such pulsars to be detectable with the presently available receivers such as GLAST and AGILE spacecrafts. It is also possible that extinct radio pulsars can be among the unidentified EGRET sources.Comment: 5 pages, 1 figure corrected version of the paper that was published in Astronomy Letter

    Ontology Based Data Access in Statoil

    Get PDF
    Ontology Based Data Access (OBDA) is a prominent approach to query databases which uses an ontology to expose data in a conceptually clear manner by abstracting away from the technical schema-level details of the underlying data. The ontology is ‘connected’ to the data via mappings that allow to automatically translate queries posed over the ontology into data-level queries that can be executed by the underlying database management system. Despite a lot of attention from the research community, there are still few instances of real world industrial use of OBDA systems. In this work we present data access challenges in the data-intensive petroleum company Statoil and our experience in addressing these challenges with OBDA technology. In particular, we have developed a deployment module to create ontologies and mappings from relational databases in a semi-automatic fashion; a query processing module to perform and optimise the process of translating ontological queries into data queries and their execution over either a single DB of federated DBs; and a query formulation module to support query construction for engineers with a limited IT background. Our modules have been integrated in one OBDA system, deployed at Statoil, integrated with Statoil’s infrastructure, and evaluated with Statoil’s engineers and data

    Observations of Non-radial Pulsations in Radio Pulsars

    Get PDF
    We introduce a model for pulsars in which non-radial oscillations of high spherical degree (l) aligned to the magnetic axis of a spinning neutron star reproduce the morphological features of pulsar beams. In our model, rotation of the pulsar carries a pattern of pulsation nodes underneath our sightline, reproducing the longitude stationary structure seen in average pulse profiles, while the associated time-like oscillations reproduce "drifting subpulses"--features that change their longitude between successive pulsar spins. We will show that the presence of nodal lines can account for observed 180 degree phase jumps in drifting subpulses and their otherwise poor phase stability, even if the time-like oscillations are strictly periodic. Our model can also account for the "mode changes" and "nulls" observed in some pulsars as quasiperiodic changes between pulsation modes of different l or radial overtone n, analogous to pulsation mode changes observed in oscillating white dwarf stars. We will discuss other definitive and testable requirements of our model and show that they are qualitatively supported by existing data. While reserving judgment until the completion of quantitative tests, we are inspired enough by the existing observational support for our model to speculate about the excitation mechanism of the non-radial pulsations, the physics we can learn from them, and their relationship to the period evolution of pulsars.Comment: 28 pages, 9 figures (as separate png files), Astrophysical Journal, in pres
    • 

    corecore