

City, University of London Institutional Repository

Citation: Kharlamov, E., Hovland, D., Skjaeveland, M. G., Bilidas, D., Jimenez-Ruiz, E.
ORCID: 0000-0002-9083-4599, Xiao, G., Soylu, A., Lanti, D., Rezk, M., Zheleznyakov, D.,
Giese, M., Lie, H., Ioannidis, Y., Kotidis, Y., Koubarakis, M. and Waaler, A. (2017). Ontology
Based Data Access in Statoil. Journal of Web Semantics, 44, pp. 3-36. doi:
10.1016/j.websem.2017.05.005

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/id/eprint/22959/

Link to published version: http://dx.doi.org/10.1016/j.websem.2017.05.005

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Ontology Based Data Access in Statoil

Evgeny Kharlamova, Dag Hovlandc, Martin G. Skjævelandc, Dimitris Bilidasb, Ernesto Jiménez-Ruizc, Guohui Xiaod,
Ahmet Soyluf, Davide Lantid, Martin Rezkd, Dmitriy Zheleznyakova, Martin Giesec, Hallstein Liee,

Yannis Ioannidisb, Yannis Kotidisg, Manolis Koubarakisb, Arild Waalerc

aUniversity of Oxford, Department of Computer Science, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK.
bNational and Kapodistrian University of Athens, Panepistimiopolis, Ilissia, 15784, Athens, Greece.

cDepartment of Informatics, University of Oslo, Blindern, 0316, Oslo, Norway.
dKRDB Center, Free-University of Bozen-Bolzano, P.zza Domenicani 3, 39100, Bolzano, Italy.

eStatoil ASA, Stavanger, Norway.
fNTNU – Norwegian University of Science and Technology, Teknologiveien 22, 2815, Gjøvik, Norway.

gAthens University of Economics and Business, 76 Patission Street, 10434, Athens, Greece.

Abstract

Ontology Based Data Access (OBDA) is a prominent approach to query databases which uses an ontology to expose data
in a conceptually clear manner by abstracting away from the technical schema-level details of the underlying data. The
ontology is ‘connected’ to the data via mappings that allow to automatically translate queries posed over the ontology
into data-level queries that can be executed by the underlying database management system. Despite a lot of attention
from the research community, there are still few instances of real world industrial use of OBDA systems. In this work
we present data access challenges in the data-intensive petroleum company Statoil and our experience in addressing
these challenges with OBDA technology. In particular, we have developed a deployment module to create ontologies and
mappings from relational databases in a semi-automatic fashion; a query processing module to perform and optimise
the process of translating ontological queries into data queries and their execution over either a single DB of federated
DBs; and a query formulation module to support query construction for engineers with a limited IT background. Our
modules have been integrated in one OBDA system, deployed at Statoil, integrated with Statoil’s infrastructure, and
evaluated with Statoil’s engineers and data.

Keywords: Ontology Based Data Access, Statoil, Optique Platform, System Deployment, Evaluation, Bootstrapping,
Optimisations.

1. Introduction

The competitiveness of modern enterprises heavily de-
pends on their ability to make the right business decisions
by relying on efficient and timely analyses of the right busi-
ness critical data. For example, one of the factors deter-
mining the competitiveness of Statoil1,2 is the ability of

Email addresses: evgeny.kharlamov@cs.ox.ac.uk (Evgeny
Kharlamov), hovland@ifi.uio.no (Dag Hovland),
martige@ifi.uio.no (Martin G. Skjæveland),
d.bilidas@di.uoa.gr (Dimitris Bilidas), ernestoj@ifi.uio.no
(Ernesto Jiménez-Ruiz), xiao@inf.unibz.it (Guohui Xiao),
ahmet.soylu@ntnu.no (
Ahmet Soylu), davide.lanti@unibz.it (Davide Lanti),
mrezk@inf.unibz.it (Martin Rezk),
dmitriy.zheleznyakov@cs.ox.ac.uk (Dmitriy Zheleznyakov),
martingi@ifi.uio.no (Martin Giese), hali@statoil.com (Hallstein
Lie), yannis@di.uoa.gr (
Yannis Ioannidis), kotidis@aueb.gr (Yannis Kotidis),
koubarak@di.uoa.gr (Manolis Koubarakis), arild@ifi.uio.no
(Arild Waaler)

1Statoil ASA, is a Norwegian multinational oil and gas com-
pany headquartered in Stavanger, Norway. It is a fully integrated
petroleum company with operations in thirty-six countries.

2https://www.statoil.com/

its exploration geologists to find in a timely manner new
exploitable accumulations of oil or gas in given areas by
analysing data about these areas. Gathering such data is
not a trivial task in Statoil and in general in data inten-
sive enterprises due to the growing size and complexity of
corporate information sources. Such data sources are often
scattered across heterogeneous and autonomously evolving
systems or has been adapted over the years to the needs of
the applications they serve. This often leads to the situa-
tion where naming conventions for schema elements, con-
straints, and the structure of database schemata are very
complex and documentation may be limited or nonexis-
tent making it difficult to extract data. As a result, the
data gathering task is often the most time-consuming part
of the decision making process.

Indeed, Statoil geologists often require data that is
stored in multiple complex and large data sources that in-
clude EPDS, Recall, CoreDB, GeoChemDB, OpenWorks,
Compass, and NPD FactPages (see Section 2 for details
about these DBs). These DBs are mostly Statoil’s cor-
porate data stores for exploration and production data
and Statoil’s interpretations of this data. Some of these

Preprint submitted to Elsevier May 30, 2017

����������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

����������

���������
���������
���������
���������

���������
���������
���������
���������

����������

���������
���������
���������
���������

������
��������

���������
��������
��������

��������

���������
�����
������

����
�������

���������
���������
���������
���������

����������

����������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

����������

���������
���������
���������
���������

����������

���������
���������
���������
���������

����������

����������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

����������

���������
���������
���������
���������

���������
���������
���������
���������

����������

���������
���������
���������
���������

���������
���������
���������
���������

����������

����
�����

������

�����������������

�����
���������

Figure 1: General diagram of OBDA.

DBs has been created long time ago, e.g., EPDS was cre-
ated about 15 years ago, and can hardly be accessed, i.e.,
queried, by geologists without a help from IT personnel
due to the complexity of their schemata, e.g., EPDS cur-
rently has about 3,000 tables with about 37,000 columns,
and a common information need of a Statoil geologist cor-
responds to an SQL query with hundreds to thousands of
terms and 50–200 joins. Construction of such queries is
not possible for Statoil geologists and thus they have to
pass their information needs to IT specialists who then
turn the needs into SQL queries. This drastically affects
the efficiency of finding the right data that should back
decision making (see Section 2 for further details).

Ontology Based Data Access (OBDA) [1] is a prominent
approach to data access in which an ontology is used to me-
diate between data consumers and data sources (see a gen-
eral diagram of OBDA in Figure 1). The ontology provides
‘a single point of semantic data access’ for data consumers,
and allows either to export data in a semantic format or to
pose queries over the integrated data sources in terms of a
user-oriented conceptual model that abstracts away com-
plex implementation-level details typically encountered in
database schemata. Domain experts are thus able to ex-
press information needs in their own terms without any
prior knowledge about the way the data is organised at
the source, and to receive answers in the same intelligible
form. The ontology is connected to the data via a set of
mappings : declarative specifications that relate ontologi-
cal terms with queries over the underlying data. OBDA
systems automatically translate ontological queries, i.e.,
SPARQL, into database queries, i.e., SQL, and delegate

execution of SQL queries to the database systems hosting
the data. OBDA is a natural fit to address the Statoil data
access challenges described above: if complex databases
are presented to users via an ontology, then they can for-
mulate queries in terms of classes and properties in an
object-centric fashion, e.g., asking for all wellbores pene-
trating a rock layer of a specific geological age. Moreover,
OBDA is a so-called virtual approach, providing an ac-
cess layer on top of databases while leaving the data in
its original stores. Thus, OBDA has the potential to im-
prove data access with a minimal change to existing data
management infrastructure.
OBDA has recently attracted a lot of attention and a

number of systems have been developed, e.g., [2, 3, 4, 5,
6]. However, to the best of our knowledge, the following
three problems have attracted only limited attention and
in isolation:

(i) How to create ontologies and mappings for a deploy-
ment of an OBDA system?

(ii) How to ensure that OBDA query processing is effi-
cient in practice?

(iii) How to ensure that the target users are actually able
to efficiently express their information needs against
an OBDA system?

At the same time, these problems have high practical im-
portance for OBDA systems in general and in particular
for effective and efficient installation and use of an OBDA
system in Statoil. Indeed, deployment of an OBDA system

2

comes with a high modelling cost due to the complexity
of the domain and of the database schemata. Moreover,
unoptimised OBDA query processing may become imprac-
tical when the ontology and/or database are large [7]. Fi-
nally, expressing information needs over an OBDA system
as a query written in a query language, e.g., SPARQL,
is error prone and requires substantial training which sig-
nificantly limits the usability of an ODBA system in a
company.
In this work we addressed these limitations and devel-

oped (i) novel semi-automatic techniques to bootstrap
new ontologies and mappings from relational databases
and to integrate existing ones, and (ii) novel optimisa-
tion techniques to improve query processing by producing
compact and efficient SQL queries, and then by carefully
planning their query execution strategy over one or several
federated DBs. (iii) a novel OBDA oriented visual query
formulation interface.
We then implemented these techniques and developed

an OBDA deployment, query optimisation, and query for-
mulation systems which were integrated in an end-to-end
OBDA system Optique [8, 9].
We applied Optique in Statoil in order to improve the

data gathering routine of Statoil geologists. To this end we
deployed our OBDA system over seven prominent, com-
plex, and large data sources: EPDS, Recall, CoreDB,
GeoChemDB, OpenWorks, Compass, and NPD FactPages
(see Section 2 for details about these DBs). These DBs are
mostly Statoil’s corporate data stores for exploration and
production data and Statoil’s interpretations of this data,
and they are heavily used by Statoil geologists.
Our OBDA solution Optique has been successfully de-

ployed and evaluated at Statoil over the aforementioned
seven DBs. We used three metrics to show this success:

• quality of the system’s deployment,

• efficiency of the system’s query processing, and

• effectiveness and efficiency of the system’s query for-
mulation support.

In order to objectify the measure of success and facilitate
all three metrics, we gathered a catalogue of queries col-
lected from Statoil geologists. These queries cover a wide
range of typical information needs, and they are hard to
formulate over Statoil databases.
In order to show the quality of our semi-automatic de-

ployment, we showed that the system enables formulation
of the queries in the catalog, i.e., it provides enough onto-
logical terms to do so, it covers a wide range of commonly
used ontological terms from the geological domain, and
the ontology and mappings in combination reflect expec-
tations of geologists, that is, the answers to queries from
the catalog correspond to expectations of geologists.
In order to show the efficiency of the Optique’s query

processing, we conducted a number of experiments. The
first set of experiments aimed at showing how our query

optimisations lead to significant reduction of query pro-
cessing time over one DB. To this end we focused on the
most complex Statoil DB available for our experiments,
EPDS, and showed how our optimisations affect query ex-
ecution time for queries from the Statoil catalog. Since
EPDS is not a public DB, we conducted the same exper-
iments over NPD FactPages, a public Statoil DB. Since
NPD FactPages is small, about 105 MB, we developed and
applied a procedure to scale this data in such a way that
the resulting DB respects the important structural charac-
teristics of the original DB. Finally, we conducted exper-
iments over federated databases in order to show practi-
cal benefits of our distributed query planning component.
Most of our experiments showed that Optique can han-
dle queries from the Statoil’s catalog reasonably well, that
is, in time comparable to the time reported by existing
Statoil’s systems.

In order to show the effectiveness of Optique’s query
formulation we showed that the semantic queries that ge-
ologists have to formulate are much simpler than the data
queries over the Statoil databases behind our OBDA de-
ployment. We also conducted a series of user studies to
show that the queries from the Statoil’s query catalog can
be formulated by Statoil’s target personnel in a reasonably
short time.

Finally, we integrated Optique in Statoil’s infrastructure
in order to facilitate the update of the system by Statoil’s
business units. In particular, we integrated Optique with
ArcGIS3 in order to show query results computed by Op-
tique on geological maps.

The paper is organised as follows: in Section 2 we
present Statoil’s data access challenges. In Section 3 we
give an overview of OBDA and then in Section 4 and dis-
cuss what are the advantages of OBDA for Statoil and
limitations of existing ODBA solutions. in Section 5 we
give technical background of our deployment, query pro-
cessing, and query formulation solutions. In Sections 6–8
we present evaluation of our OBDA deployment at Statoil.
Note that in these three sections we introduce several sys-
tem requirements that we consolidated by interviewing ge-
ologists and IT-specialists of Statoil. These requirements
were important for us to guide the work and for Statoil
colleagues to measure the success of this work. Moreover,
gathering and consolidating requirements was compulsory
for us to proceed with the system deployment in Statoil.
In Section 9 we give details on how we integrated Optique
platform in Statoil’s infrastructure. In Sections 10 and 11
we summarise the lessons we learned and conclude. Fi-
nally, in Appendix A we give an end-to-end real example
from our statoil deployment: we present information need
of a Statoil geologist, show how it can be formulated over
an ontology as a semantic query both in a formal query
language and in our visual query system, present mappings
relevant to the semantic terms in the semantic query, the

3https://www.arcgis.com/

3

SQL query generated from the semantic query with the
help of the ontology and mappings, and the distributed
query execution plan generated by our query planning sys-
tem.

Delta from Previous Publications. This submission mainly
extends our ISWC’15 paper [10] in several important di-
rections. Some material form Sections 5-7 also appeared
in [11, 12, 13, 14, 15]. In short, we now presented deploy-
ment in Statoil over a federated scenario of six databases
(EPDS, GeoChemDB, Recall, CoreDB, OW, Compass),
while previously the deployment was over a single database
EPDS (that essentially included NPD FP). Thus, deploy-
ment, query optimisation techniques, and evaluation for
the federated scenario are new. Also, we present here a
new evaluation of the query formulation system with Sta-
toil engineers, a very detailed use-case description, and we
first time explain how Optique is integrated in the Statoil’s
infrastructure. We now give details of what is new in this
paper comparing to [10].

• Data Access in Statoil (Section 2): The use-case de-
scription of Section 2 significantly extends what we
previously reported [10]. Indeed, now we introduce
six instead of one database, give Table 1 and give
a much more detailed description of the data access
routine in Statoil.

• Ontology Based Data Access (Section 3): In order to
be self-contained, we added to the current submission
an extended section that introduces OBDA and for
this purpose we developed a detailed example.

• Technical Background of the Optique Platform (Sec-
tion 5): Everything in the sub-section on Federated
Query Execution (Section 5.3) is new. Sections 5.2
and 5.3 give much more details than the correspond-
ing sections in [10].

• Deployment (Section 6): most of Section 6 is new.
The system is now running over seven DBs, while
in the previous publications it was only over EPDS.
Therefore, most of Section 6.2 is new including Tables
2 and 3 with detailed statistics of bootstrapped on-
tologies and evaluation of their OWL 2 profiles. Sec-
tion 6.3 that contains comparison with other systems
including ontop, MIRROR, and D2RQ and shows that
we are better in most of the cases is new. Finally, we
conducted a novel assessment: we checked whether
bootstrapped ontology and mappings lead to expected
query results.

• Query Answering over OBDA Deployment in Statoil
(Section 7): We have significantly extended the eval-
uation scope. We evaluated the efficiency of Optique
for the Statoil’s query catalog over federated DBs and
this is all new. Moreover, we evaluated Optique over
EPDS and scaled NPD FactPages the effect of opti-
misations based on OBDA constraints techniques and

this was only partially presented in our previous pub-
lications: results for scaled NPD FactPages are all
new, while for EPDS the new aspect is the insight on
the evaluation in Table 7.

• Visual Query Formulation at Statoil (Section 8): The
evaluation of our query formulation system with Sta-
toil engineers is new.

• Integration in Statoil’s Infrastructure (Section 9):
The whole section is new. We have integrated our
platform with the ArcGIS system and in general the
implementation of our system has become much more
mature. All this (including Figures 21 and 22) is new.

2. Data Access in Statoil

In this section we describe the data access practices of
geologists in Statoil and present challenges they confront.

2.1. Exploration Geology as Data Management
The main task of exploration geologists in oil companies

like Statoil, is to find exploitable deposits of oil or gas in
given areas and to analyse existing deposits. This is typ-
ically done by investigating how parts of the earth crust
are composed in the area of interest. In Figure 2 shows
an area of investigation around two platforms located off-
shore; the earth’s crust under the platforms has several
rock layers. The earth’s crust can be analysed indirectly
with seismic investigations and more directly by collecting
rock samples and so-called log curves from drilled well-
bores. In the former case the analyses are conducted by
recording the time of echoes of small explosive charges that
are fired repeatedly over the area of interest, and using
this information to estimate the geological composition of
the ground below. In the latter case the analyses is done
over rock samples that are taken both during and after
drilling and through measurements collected from sensors
installed along the wellbore. By combining information
from wellbores, seismic investigations, and general geolog-
ical knowledge, geologists can, for example, assess what
types of rock are in the reservoir and intersected along the
wellbore. The geologist does this typically in two steps:

(i) find relevant wellbore, seismic, and other data in Sta-
toil databases,

(i) analyse these data with specialised analytical tools.

It has been observed both in Statoil and other compa-
nies [16] that step (i) is the most time consuming part of
the process. The reason is that, on the one hand, the size
and complexity of the data sources and access methods
make it impossible for end-users to collect the necessary
data efficiently. On the other hand, involvement of IT
staff that can implement data gathering queries makes the
process lengthy. We now describe the Statoil databases
that geologists have to access, existing data accessing
infrastructure in Statoil, and conclude with desiderata
that motivate the solution we applied in Statoil.

4

Table 1: Database metrics: Showing number of schema constructs for each database schema. Zero-values are removed from the table for
readability.

EPDS GeoChemDB Recall CoreDB OW Compass
Overview
Tables 1595 90 22 15 78 895
Mat. views 27 4
Views 1703 41 12 1026 1004
Columns 8378 3396 430 63 16668 30638

Tables by no. rows
0 rows 1130 3 2 15 512
1 row 1152 9 2 4 34

1 < rows ≤ 10 135 9 1 4 15 117
10 < rows ≤ 100 83 20 3 2 17 80

100 < rows ≤ 1 000 58 30 3 4 12 87
1 000 < rows ≤ 10 000 63 10 5 1 11 42
10 000 < rows ≤ 100 000 57 4 2 1 2 19

100 000 < rows ≤ 1000 000 35 3 4 2 4
1 000 000 < rows 12 3 2 1

Tables by no. columns
1 col 4 5 6

1 < cols ≤ 10 586 68 7 11 47 527
10 < cols ≤ 100 1032 23 13 4 26 353

100 < cols ≤ 1 000 3 2 9
1 000 < cols

Mat. views by no. columns
1 col

1 < cols ≤ 10 23 1
10 < cols ≤ 100 4 3

100 < cols

Views by no. columns
1 col 3 2 3 2

1 < cols ≤ 10 526 12 555 509
10 < cols ≤ 100 1174 14 9 461 471

100 < cols ≤ 1 000 13 3 7 22
1 000 < cols

5

Wellbores

Platforms

Rock
layers

Figure 2: Platforms, wellbores, and rock layers; an illustration of the
complex nature of petroleum reservoirs.

2.2. Geological Data at Statoil

Statoil has a number of databases of different formats
and sizes that have different content and provided by dif-
ferent vendors and that geologists have access to. In our
study we focussed on the following seven databases. In-
formation about the structural size of the Statoil internal
databases is found in Table 1.

(1) Exploration and Production Data Store (EPDS) is the
Statoil’s central repository of geological data of the
type described above, i.e., for exploration, produc-
tion data, and its interpretations. EPDS is stored in
an Oracle database. It was created about 15 years
ago and it currently has about 3,000 tables and views
that have about 37,000 columns all together. As is of-
ten the case in large enterprises, naming conventions
for schema elements, constraints, and the structure of
EPDS’s schema are complex and considerable parts of
it have limited or no documentation. As a result, the
major challenge with accessing EPDS is the schema
complexity: writing queries over EPDS requires fa-
miliarity with all the variety of its underlying schema
components. In terms of size, EPDS is about 700 GB.

(2) Core DB Information about samples taken from the
wellbore, and measurements done on them

(3) Openworks Project databases, that is, work in
progress. Mostly geological interpretations, but also
some measurements. Information should be moved to
other databases, like EPDS, when the information is
stable.

(4) Recall Wellbore logs, that is, measurements made
down along the wellbore, both during drilling, and on
later occasions.

(5) GeoChem Measurements from the wellbore in the field
of geochemstry. Mostly spectrometry, but also some
other measurements.

(6) compass Geometric and geographic infomation about
wellbores. E.g. 3d wellbore paths.

(7) Norwegian Petroleum Directorate FactPages (NPD
FP) Unlike the others, this is not an internal database
at Statoil, but an external data source governed by
the NPD, which reports to the Norwegian Ministry
of Petroleum and Energy. The directorate performs a
wide range of tasks on regulating and monitoring oil
and gas activities on the Norwegian Continental Shelf.
NPD FP [17] is a dataset that is published online by
the NPD and it contains data about oil and gas com-
panies, i.e., their producing fields, ongoing exploratory
drilling wellbores, and seismic surveys. NPD FP is
frequently used by Statoil domain specialists and we
verified with them that it contains a wide range of
relevant terms. NPD contains mainly geological and
legal information pertaining to wellbores and licenses.

We next describe the approaches currently used in Sta-
toil to access the above and other databases.

2.3. Data Access in Statoil

Following common practices of large enterprises, geolo-
gists at Statoil analyse data in two steps: (i) they first
access and gather relevant data from available databases,
and then (ii) apply analytical reporting tools on top of the
gathered data.

Example 1. An example and typical Statoil task that
would require the two above steps is the following:

Show all the core samples overlapping with the
geological unit X, where X is a given lithostrati-
graphic unit of interest, e.g., the Brent group or
the Tarbert formation.

It has been estimated that in the oil and gas indus-
try [16], and this is confirmed by our Statoil-internal in-
formation, 30–70% of the time that geologists spend on
analytical tasks is invested in the first step of finding the
right data for analyses. The focus of this work is to im-
prove Statoil’s data access with Semantic Technologies and
thus we now give details on why finding the right data is
hard.

Access Points. The data access step is typically done via a
variety of query interfaces and data extraction tools, such
as geographical information system (GIS) tools and spe-
cialised data manipulation tools, that we shall collectively
refer to as access points. The flexibility of the access points
is limited and in general users can control them only by
inserting values for certain query parameters. When in-
formation needs cannot be satisfied with any of the avail-
able access points, geologists, possibly with the help of IT
staff, try to combine answers obtained from several access
points. In some cases, geologists have to contact IT staff
to provide a new access point.

6

Figure 3: FME: a commercial tool for defining ETL processes. Each box in the diagram describes a data manipulation task. The contents of
the boxes are blurred for privacy reasons.

Creating Access Points. Access points are typically based
on materialised special purpose database views. To make
a new view or to modify an existing one, IT staff typically
use external tools, such as Feature Manipulation Engine
(FME).4 The process of making such view consists of the
three ETL steps: (i) extracting, (ii) transforming, and
(iii) loading data. For Step (i) Statoil IT staff locate rel-
evant data in EPDS, other data sources or existing access
points, and produce SQL code for its extraction. This
is done using specialised data extraction tools, since di-
rectly accessing complex database schemata like EPDS’
is prone to error, time consuming, and not always feasi-
ble due to its complexity and limited documentation. An
SQL query for data extraction generated by the extraction
tools are typically large and, e.g., over EPDS they may
contain thousands of words and have 50–200 joins. Dur-
ing Step (ii), using specialised tools, IT staff define how to
preprocess the data extracted at Step (i). This adds an-
other layer of data processing, this time over the relevant
data, to perform projections, filtering, joins, schema re-
namings and complex computations such as geographical
coordinate conversions. In Step (iii), IT staff populate the
access point’s view with the data: both data extraction
and manipulation code is executed which materialises the
view. In sum, building an ETL process that establishes an
access point for a complex information need consists of a
myriad of data access and processing steps, many of which
require deep knowledge of the data that is being processed
and how it is represented. Figure 3 shows an excerpt of an
FME process that establishes an access point for gathering

4http://www.safe.com/

the information for the information need about overlap-
ping core samples as in Example 1.

Data Access Bottleneck. It is common that Statoil geolo-
gist have to involve IT staff for data access especially when
geologists need to ‘explore’ the data, e.g., in the case when
the concrete information need is not clear and depends on
the available data or when a new access point has to be
created. Thus, IT staff become the de facto mediators
between geologists and databases and this is the case not
only for Statoil but for large and data intensive compa-
nies in general [16]. In practice, it is often the case that
the availability of IT personnel that both understand the
information need of the geologist and the inner workings
of the data sources and tools necessary to answer the in-
formation need is scarce, and such people are often over-
loaded. Moreover, development of a new access points is
a very time consuming process and may take up to sev-
eral weeks; e.g., in Statoil it commonly takes up to several
days to produce an access point that completely answers
the required information need. The concrete time of course
depends on the complexity of the query task and the de-
gree of the involvement of the IT staff. As the result, the
IT staff involvement became the (time) bottleneck of the
data access.

2.4. Improving Access to Statoil’s Data

There are around 900 geologists and geophysicists in
Statoil and accessing data is their routine. Currently, if the
access is done via existing access points, then the data can
be extracted relatively fast, while the average turnaround
for new access points is about four days. Reducing this

7

time from several days to several hours would potentially
bring a significant saving by improving the effectiveness
of Statoil’s exploration department, which is key to their
overall competitiveness and profitability. One way to re-
duce the data access time is to provide Statoil geologists
with a way to express their information needs to the sys-
tem directly, without an intervention of the IT staff. In the
next section we describe an Ontology Based Data Access
approach that has the potential to satisfy Statoil’s needs.

3. Ontology Based Data Access

Ontology Based Data Access (OBDA) is a prominent
approach for end-user oriented access to databases. OBDA
relies on Semantic Web technologies, and its application
to relational databases has been heavily studied by the
Semantic Web community. Using an example from the oil
industry domain, we now describe the main concepts of
Ontology Based Data Access to relational databases.

3.1. General Idea

The main idea behind OBDA is to provide the user
with access to the data store via the use of a domain
specific vocabulary of classes, i.e., unary predicates, and
properties, i.e., binary predicates, that the user is familiar
with. This vocabulary is related to the database schema
via view definitions, called mappings ; thus, technical
details of the database schema are hidden from end-users.
For example, in the case of Statoil, the majority of EPDS
table names are not meant to be read by end-users,
e.g., EXTOBJIND BKUP, RCA GRDENS, and SSRF RCK SEG,
while the semantics of others are clearer, e.g., DOCUMENT,
WELLBORE, and CORE. The user formulates queries in terms
of the classes and properties in an object-centric fashion,
e.g., they can ask for all wellbores penetrating a rock layer
of a specific age. Queries over the domain vocabulary are
then unfolded into queries over the database schemas and
executed over the data by DBMS. An important feature
of the OBDA approach is that the domain vocabulary
is enhanced with a set of formal axioms that constitute
an ontology, e.g., the ontology may say that each layer
of chalk rock has a specific age. In contrast to database
constraints, ontological axioms can be exploited to enrich
query answers with implicit information. That is, in the
OBDA scenario the data is treated under the so-called
Open World Assumption and can be incomplete w.r.t.
to the ontology axioms. E.g., the data may state that
the rock layers in the area surrounding the Ekofisk field
are chalk, but not their age, and thus this data would be
incomplete w.r.t. the axiom stating that all chalk layers
are from Cretaceous era. Enrichment of answers is done
via logical reasoning: a user query Q over the domain
vocabulary can be rewritten into a new query over this
vocabulary that is logically equivalent to Q w.r.t. the
ontology and ‘absorbs’ a fragment of the ontology relevant
for answeringQ. For example, if the user asks for wellbores

that penetrate rock from the Cretaceous era, then this
query will not return the wellbores of Ekofisk, while the
rewritten query will also ask for wellbores that penetrate
chalk, and thus return the Ekofisk’s wellbores. To sum up,
an OBDA system provides the user with object-centric
domain vocabulary enhanced with an ontology that allows
queries to be formulated in intuitive terms that the user
is familiar with. OBDA systems are able to enrich user
queries with ontological knowledge and unfold them into
queries over databases. Based on our Statoil inspired
example, we now give more details of OBDA components.

3.2. Relational Databases

In the relational data model, a database consists of a
schema and instance, where the schema is a set of ta-
ble names with corresponding attribute names and con-
straints, e.g., primary and foreign keys. The instance ‘pop-
ulates’ tables of the schema with tuples by assigning values
to the tables’ attributes. We illustrate this on our running
example.

Example 2. Consider the sample database schema in-
spired by our experience with Statoil in Figure 4(a). The
schema consists of four tables. Tables Purpose and
Location are for storing wellbore purposes and locations,
respectively. The table WellBore is for storing informa-
tion about wellbores and it has four attributes including
ID as the primary key, and PurpID and LocID as foreign
keys related to the tables Purpose and Location, respec-
tively. Finally, the table ExpWBore is for storing informa-
tion about exploration wellbores. In Figure 4(b) we present
a sample database instance over the sample schema.

3.3. Ontologies

An ontology is usually referred to as a ‘conceptual
model’ of (some aspect of) the world. It introduces the
vocabulary of classes and properties that describe vari-
ous aspects of the modelled domain. It also provides an
explicit specification of the intended meaning of the vo-
cabulary by describing the relationships between different
vocabulary terms. These relationships are specified with
special first-order formulae, also called axioms, over the
vocabulary. An ontology can be thought of simply as a
set of such axioms—i.e., a logical theory. Besides axioms,
an ontology can contain ontological facts, which can be
specified as first-order atoms with constants but not vari-
ables. These constants are interpreted as (representations
of) objects of the domain. Viewing an ontology as a logi-
cal theory opens up the possibility of using automated rea-
soning for different tasks, including checking an ontology’s
internal consistency (checking whether the ontology does
not entail ‘false’, i.e., if it is logically consistent), query
answering, and other (non-)entailments.

Example 3. Figure 4(c) lists a vocabulary for describ-
ing wellbores with classes such as Purpose, Location and
classes for different wellbores; and properties such as

8

Purpose

ID pk
Name

Location
ID pk
Name

WellBore
ID pk
PurpID

Content

LocID

ExpWBore

ID pk
Type

0..1 ∗

0..1
∗

(a) Database Schema

Location:

ID Name

L1 Norway

L2 UK

Purpose:

ID Name

P1 Shallow

P2 Injection

Wellbore:

ID PurpID Content LocID

W1 P1 Dry L1

W2 P2 Oil L2

ExpWBore:

ID Type

E1 Active

E2 Discovery

(b) Database Instance

Classes: Location, Purpose, WellBore,
ExplorationWellBore, ShallowWellBore,

Properties: hasLocation, hasPurpose, hasName

(c) Ontology Vocabulary

ExplorationWellBore � WellBore (1)

ShallowWellBore � WellBore (2)

WellBore � ∃hasContent (3)

(d) Ontological Axioms

ExplorationWellBore(f(ID))
�→ (4)
SELECT ID
FROM ExpWBore

ShallowWellBore(f(W.ID))
�→ (5)
SELECT W.ID
FROM WellBore W, Purpose P
WHERE W.PurpID = P.ID
AND P.Name = "Shallow"

hasLocation(f(ID), f(LocID))
�→ (6)
SELECT ID, LocID
FROM WellBore

(e) Mappings

ExplorationWellBore(objE1) (7)

ExplorationWellBore(objE2) (8)

ShallowWellBore(objW1) (9)

hasLocation(objW1, objL1) (10)

hasLocation(objW2, objL2) (11)

(f) Ontological Facts

Figure 4: Sample Ontology Based Data Access Scenario

hasLocation, hasContent and hasName. Figure 4(d) con-
tains axioms using the vocabulary. Axioms (1) and (2)
state that exploration wellbores and shallow wellbores are
wellbores. Axiom (3) states that every wellbore has some
content. In Figure 4(f) there are ontological facts stating
that objE1, objE2 are exploration wellbores, objW1 is a shal-
low wellbore, and objW1 and objW2 have respectively the
locations objL1 and objL2.

In the last decade, a number of tools for ontological rea-
soning have been developed. The existence of such tools
was an important factor in the design of the OWL ontology
language [18] and its basis in description logics [19]. OWL
was initially developed to be used in the Semantic Web.
The availability of description logic based reasoning tools
has, however, contributed to the increasingly widespread
use of OWL, not only in the Semantic Web, but as a pop-

ular language for ontology development in fields as diverse
as biology [20], medicine [21], geography [22], geology [23],
astronomy [24], agriculture [25] and defence [26]. Recently
ontologies has been recognised as a prominent mechanism
for data integration and end-user oriented data access.

3.4. Mappings

Via mappings one can declaratively define how ontolog-
ical terms are related to terms occurring in the relational
schema. Mappings are essentially (read-only) view defi-
nitions of the following form that declare how to popu-
late classes with objects—in OWL objects are represented
with Uniform Resource Identifiers (URIs)—and to popu-
late properties with object-object and object-value pairs:

Class(fo(x)) �→ SQL(x),Property(fo(x), fo(y)) �→ SQL(x, y),

Property(fo(x), fv(y)) �→ SQL(x, y),

9

where SQL(x) and SQL(x, y) are SQL queries with respec-
tively one and two output variables, and fo, fv are func-
tions that ‘cast’ values returned by SQL into respectively
objects, i.e, URIs, and values.5 Classes are populated
with URIs fo(x) computed from the values x returned by
SQL(x). Properties can relate two objects, e.g., by stating
that a wellbore has a particular location, or assign a value
to an object, e.g., stating that a location has a particular
name (a string), and they are respectively populated with
pairs of objects fo(x), fo(y) or pairs of an object fo(x)
and value fv(y) computed from the values x and y re-
turned by the SQL query. A mapping is direct if it relates
a table to a class or an attribute to a property. We will
rely on direct mappings in automatic mapping generation
(see Section 5.2 for details). Given a database and a set
of mappings over it, one can execute SQL queries in the
mapping definitions and populate the classes and prop-
erties of the mappings, thus creating a set of ontological
facts. This process is usually referred to as materialisation
of the ontological facts defined by the mappings.

Example 4. Figure 4(e) contains three mappings. The
first one defines how to populate the class of exploration
wellbores with objects computed from IDs of ExpWBore

table. This mapping is direct. Materialisation of facts
defined by this mapping over the sample database instance
in Figure 4(c), gives Facts (7) and (8) in Figure 4(f).
Note that objW1 = fo(W1) is the URI computed from the
first tuple in the table ExpWBore. Mapping (5) defines
which objects can be in ShallowWellBore wellbores via a
selection on the purpose name. This mapping is not direct
and Fact (9) is the materialisation of this mapping over
the sample database instance. Finally, Mapping (6) is
direct for the property hasLocation, and Facts (9) and (11)
are the materialisation for this property over the sample
database instance.

In contrast to common existing approaches, like e.g. the
ETL processes behind access points shown in Figure 3,
OBDA mappings are declarative, and their semantics is
captured by the ontology. The mappings must still be con-
structed and maintained, but the potential for automation
and tool support is high because of the precise definition
of each mapping and their relative low complexity. Indeed,
mappings are atomic in the sense that each of them relates
to DBs one class or property. Therefore, the SQL query
of each mapping much smaller than the typical SQL code
of ETL processes behind access points or in collections of
SQL views. This makes the SQL code of individual map-
pings more readable and more maintainable that the one
behind access points. Another advantage of OBDA map-
pings is that they can be reused by many data acces tasks:
they ‘connect’ ontologies to DBs and then can be used
for any query over the ontology, while each ETL processes

5These functions should ensure coherent generation of URIs that
respects primary and foreign keys.

like in Figure 3 is for a concrete data access task and can
hardly be reused for other tasks.

3.5. Query Answering Over Ontologies and in OBDA

As we discussed above, ontological axioms and facts are
a logical theory, and query answering over them is logical
reasoning rather than operations on a data instance as in
the case of relational databases. To see the difference be-
tween relational and ontological query answering, consider
the following example.

Example 5. The following query (in SPARQL notation)
selects all objects that have content:

SELECT ?x WHERE { ?x :hasContent ?y. }

Considering the ontological facts in Figure 4(f) as a
database instance with two unary and one binary tables, it
is easy to check that answering the query over this instance
yields no answers since the data has no information about
hasContent. At the same time, the facts in Figure 4(f) to-
gether with the axioms in Figure 4(d) logically entail three
answers to this query: objE1, objE2, and objW1. These an-
swers are not explicit, but rather implicit, e.g., objW1 is
a shallow wellbore, thus, due to Axiom (2) it is also a
wellbore, and therefore, due to Axiom (3), it should have
content.

So, since query answering in OBDA involves logical rea-
soning, it allows one to retrieve both explicit and implicit
query answers. It can be seen as reasoning over the ontol-
ogy and (virtual) ontological facts that one would have if
materialising them from the database over which the map-
pings are defined. In the case of OBDA, this reasoning is
simulated via a two step process of query rewriting and
unfolding as presented in Figure 5. A query Q over the
ontological vocabulary is first rewritten w.r.t. the ontology
O into a union Q� of queries s.t. each query of Q� is sub-
sumed by Q. This rewriting is in essence a compilation of
relevant ontological information into Q and similar to the
resolution procedure in Prolog. We refer the reader to [27]
for details on rewriting, and illustrate it with an example
below. Then, the query Q� is unfolded into an SQL query
SQL using mappings. Finally, SQL is evaluated over the
database instance using a database management system
which gives the set of answers. It was shown in [27] that
the answers computed via rewriting and unfolding, after
they are turned into objects or values with the appropriate
fo or fv, coincide with the answers that are computed over
the virtual ontological facts.

Example 6. Rewriting the query from Example 5 over the
sample ontological axioms in Figure 4(d) gives the union

SELECT ?x WHERE { ?x hasContent ?y. }

UNION { ?x a WellBore. }

UNION { ?x a ExplorationWellBore. }

UNION { ?x a ShallowWellBore. }

10

Q

Ontology

rewrite

Mappings

unfold DB Answers
Q� SQL

Figure 5: Query processing in OBDA

The next step is unfolding the rewritten query with the
sample mappings in Figure 4(e) into the following SQL
query:

SELECT f(ID) AS x FROM ExpWBore

UNION

SELECT f(W.ID) AS x FROM WellBore W, Purpose P

WHERE W.PurpID = P.ID AND P.Name = "Shallow".

The unfolding is built from Mappings (4) and (5). As there
are no mappings for hasContent and Wellbore, these parts
of the query are simply ignored. Evaluation of this SQL
query over the data instance in Figure 4(b) returns E1, E2,
and W1. Translation of these values into objects gives the
same answers as in Example 5, where we computed the
answers over the virtual ontological facts.

In the next section we discuss advantages and disadvan-
tages of OBDA for Statoil and present technical require-
ments for OBDA to fulfil Statoil’s needs.

4. OBDA: Advantages for Statoil and Limitations

4.1. OBDA: Advantages for Statoil

The main advantage of OBDA systems is that they offer
an end-user oriented vocabulary that can be used to com-
pose queries. Predefined query templates that are typically
available for end-users are not satisfactory (i.e., have lim-
ited applicability) in scenarios such as the one of Statoil,
where there is a frequent need for queries that do not fol-
low the templates. OBDA, in contrast, offers a vocabulary
that can be seen as ‘building blocks’ that are not specifi-
cally tailored to any query but can be used to compose a
variety of queries. Thus, OBDA naturally supports data
exploration tasks needed in Statoil and allows the users to
write new queries themselves without requesting IT sup-
port.
Another advantage of an OBDA system is that it can be

layered on top of databases without any required customi-
sation. View-based query answering and data warehouses
follow a similar approach, but they typically require to
move data from the original database to the views, or the
data warehouse. OBDA, in contrast, is a so-called virtual
approach, that is, it does not require to pre-materialise any
data at all. Thus, OBDA systems avoid the problem of up-
dating materialised data. The OBDA approach is OLTP
rather than OLAP oriented. As we observed in Statoil, ge-
ologists typically need OLTP queries, up-to-date answers,
and the ability to compose queries themselves. Thus, we
see OBDA as more suitable for our use-case than other
technologies, e.g., data warehousing.

4.2. OBDA: Limitations for Statoil

The advantages of OBDA come with challenges.
The first challenge is to obtain the required components

to install an OBDA system, i.e., ontologies and mappings.
To overcome this we developed a bootstrapper that is able
to extract ontologies and direct mappings from relational
schemata. To address the industrial domain at Statoil, we
developed an ontology, called Subsurface Exploration (SE)
ontology, that is heavily relies on information extracted
from the seven databases presented in Section 2 and that
widely covers the domain of the petroleum subsurface
exploration. Details on our semi-automatic ontology
construction techniques can be found in Section 5.2 and
our experience with deployment in Statoil in Section 6.
The second challenge is to guarantee that our OBDA

system is able to process semantic queries over massive
amounts of data, as in Statoil. Since query processing in
OBDA requires rewriting, unfolding, and query execution
with an RDBMS, this is not a trivial task. In Sections 5.3
and 5.4 we present our query optimisation techniques and
in Section 7 results of our experiments.
The third challenge comes with the assumption that the

users can formulate queries over the ontological vocabu-
lary. SPARQL [28] is the standard query language over
ontologies; however, it is not end-user oriented. To over-
come this challenge, we developed an interface—see Sec-
tion 5.5 for details of our techniques–tailored for users that
are not familiar with formal query languages. Our inter-
face is expressive enough to cover most of typical queries
we acquired from Statoil geologists and in Section 8 we
present results of our user study.

5. Optique Platform: System Overview and Tech-
nical Background

We start with an overview of our OBDA platform Op-
tique and then into technical details of four of its com-
ponents that are the most critical for the deployment in
Statoil.

5.1. System Overview

The general Optique platform architecture, shown in
Figure 6, has two user roles: the end-user, in our case
typically a geoscientist that wants some specific access to
data, and the IT-expert, whose job it is in part to provide
such end-users with access to data. The Optique platform
consists of various components that are integrated in a
common framework, provided by the Information Work-
bench [29]. Ontologies, mappings, queries and other spec-
ifications, like SPARQL repository settings, are stored in
a central repository that all components can access.
The end-user interacts primarily with our query formu-

lation tool (see Section 5.5 for details) that lets the end-
user formulate SPARQL queries using the domain vocab-
ulary defined in the ontology and issue these queries over
the data sources connected to the platform. The client

11

End-user IT-expert

Data models
Std. ontologies

…

Visualisation
& Analysis

Query
Formulation

Ontology & Mapping
Management

Ontology MappingsQueries

Query Transformation
Query Planning

Query Execution Query Execution Query Execution

· · · · · ·

re
su
lts

streaming data temporal data static data

central repository

Figure 6: Optique Architecture Overview

side interface of the query formulation tool is driven by
information in the ontology, and this information is fed to
the client by a server side part that can also exploit rank-
ing using query logs to better the user’s efficiency and user
experience.
The queries constructed by the formulation tool is pro-

cessed by our query transformation module (see Sec-
tion 5.3 for details), which considers the information in the
ontology, mappings, data source schemas, and additional
optimisation settings, to transform the SPARQL query
into an optimised federated SQL query over all the sources
connected to the platform. This SQL query is passed on to
our query planning and execution module (see Sections 5.3
and 5.4 for details), that deconstructs the SQL query and
orchestrates the evaluation of the query parts to the cor-
rect underlying data sources. The data sources evaluates
the query parts as any other SQL query and return the
results back to query execution module, which assembles
the query answering results of the sources to form the fi-
nal result of the end-user query.6 This result is given back
to the query transformation module which delivers the re-

6In the setup of the Optique platform at Statoil we only access
static data sources, i.e., regular relational databases. In a different
installation of the platform, we also access temporal and streaming
sources [30].

sult to the end-user following the SPARQL protocol [31].
Depending on how the end-user query was issued, the re-
sults can be visualised differently: as a regular table, in
a wiki front-end provided by the Information Workbench,
or displayed directly in Statoil end-user expert tools, via a
transformation of the SPARQL query result set, see Sec-
tion 9.
The IT-expert is equipped with interfaces to setup and

maintain the platform and its artefacts, in particular the
deployment module (see Section 5.2 for details) that can
construct ontologies and mappings over the data sources
using the data schemas as input. There are also interfaces
that allow the IT-expert to add new artefacts to the plat-
form, and examine and edit those stored in the central
repository, e.g., queries, ontologies and mappings. The
platform relies on existing tools for ontology development
like Protégé,7 but features custom-built modules for map-
ping construction [32].
We now proceed with more technical background on four

Optique modules: deployment module for creating ontolo-
gies and mappings, query optimisation and query process-
ing module, federated query execution module, and end-
user oriented query construction module.

7http://protege.stanford.edu

12

5.2. Deployment

An OBDA specification is typically defined in the lit-
erature as a 4-tuple composed by an ontology vocabulary
V, an ontology O, a set of mappings M and a database
schema S. A OBDA instance is an OBDA specification
where the database schema S is replaced by D, a database
instance for S.
We support the following tasks for bootstrapping on-

tologies and mappings, or assets, from RDBs in order to
create an OBDA instance.

(i) Bootstrapping : Given a relational database D, gen-
erate an instance (D,V,O,M). This task can be
naturally divided into two sub-tasks.

- Vocabulary and Ontology generation: Given D, cre-
ate a vocabulary V and an ontology O over V.

- Mapping generation: Given D, V, and O create a
set of mappings M relating D with V.

(ii) Importing : Given an instance (D,V,O1,M) and an
ontology O2, return an instance (D,V,O,M), where
O is the alignment of O1 and O2.

Task (ii) is important in applications where ontologies
(partially) describing the domain of interest have been al-
ready created and users want to incorporate them into
their semantic data access system.

The bootstrapping of the ontologies and the mappings
enables a (preliminary) deployment of semantic data ac-
cess system. These mappings and ontologies, however,
require further inspection by ontology engineers and do-
main experts to detect the most promising classes, prop-
erties, axioms, and mappings, and to verify their quality.
Neverthelesss, the bootstrapped assets should meet some
minimal requirements so that they can be usable in prac-
tice. We have identified the following metrics to measure
and guarantee a minimum quality of the generated assets:
(1) Ontology language: compliance with standard ontology
languages with well-defined semantics like OWL 2 and its
profiles to enable the use of a wide-range of Semantic Web
technologies. Note that the choice of the ontology lan-
guage (e.g., one of OWL 2 profiles) also affects suitability
of the different query answering engines. For example, if
the bootstrapped ontology is to be used in a OBDA sce-
nario, as in Optique, OWL 2 QL profile is required by the
query rewriting engine. (2) Mapping language: compli-
ance with standard directives like the W3C direct mapping
specification8 and standard W3C mapping languages like
R2RML.9 (3) Query coverage: suitability of the ontology
vocabulary to formulate the queries that the user is inter-
ested in. (4) Query results : accuracy of the query results
obtained with the bootstrapped instance in the sense that
the query answer should satisfy the user’s expectations.

8Direct mappings: http://www.w3.org/TR/

rdb-direct-mapping/
9R2RML language: http://www.w3.org/TR/r2rml/

To the best of our knowledge existing bootstrapping
systems provide limited or no support for the bootstrap-
ping tasks and quality requirements described above, see,
e.g., [33, 34] for an overview of such systems. Most of
the state of the art bootstrappers fail to conform with
the ontology and mapping language standards, or they do
not provide profiling capabilities for the outpout ontology.
Furthermore, BootOX outperforms existing systems in
bootstrapping that were available for benchmarking (see
Section 6.3 for details).

Bootstrapping. The goal of bootstrapping is to find pat-
terns in D, i.e., SQL queries SQL(x) and SQL(x, y) that
correspond to meaningful classes and properties. We boot-
strap three types of mappings depending on what rela-
tional algebra operators can appear in their SQL-parts:
(i) projection, (ii) selection, and (iii) full mappings that
allow any relational algebra operators.
A special kind of projection mappings, that are recom-

mended by W3C as the standard way to export relational
data in RDF, are direct mappings. They mirror RDB
schemata by essentially translating (i) each (non-binary)
table into an OWL class; (ii) each attribute not involved
in a foreign key into an OWL datatype property; (iii) each
foreign key into an OWL object property.
Generation of axioms, however, is usually a more in-

volved process. Ontological vocabulary extracted by di-
rect mappings can be enriched with axioms by propagat-
ing RDB constraints, e.g., a foreign key relating two tables
could be propagated into a subclass axiom between the two
corresponding classes. BootOX [14] relies on a series of
patterns to transform database features into OWL 2 ax-
ioms and puts special attention to the OWL 2 profile of
the generated ontology (see Appendix B for a complete
list of patterns). Database features can be encoded us-
ing different axioms which may lead to different OWL 2
profiles. For example, primary keys and unique constraints
can be modelled with the OWL 2 construct HasKey, which
is supported in OWL 2 RL and OWL 2 EL, but must be
avoided if the target ontology language is OWL 2 QL as
in our OBDA scenario.
BootOX can also discover implicit constraints in

databases, e.g., minimal primary keys in tables, candidate
foreign keys by checking containment between (samples
from) projections of tables. While working with EPDS we
found that the discovery of implicit constraints was prac-
tically important since prominent tables are materialised
views without specified primary or foreign keys, and ax-
ioms constructed from such constraints are exploited in
query optimisation. Note that the bootstrapped ontology
can be quite close to the source schema and we see this
as a natural outcome: bootstrapping is the first step in
OBDA system deployment, and the resulting assets are by
no means perfect, but provide a starting point for post-
processing and extension.
Selection mappings are bootstrapped in order to create

class and property hierarchies, e.g., we take a class C

13

bootstrapped with direct mappings and verified by users,
and in the corresponding tables we learn attributes
whose values give good clustering of tuples; then, for
each cluster we create a subclass of C. For example
in one of the databases the table WellBore contains
different types (i.e. clusters) of wellbore according
to their purpose and one could bootstrap axioms like
‘WellBore has purpose Appraisal SubClassOf: WellBore’.
In order to bootstrap full mappings, we discover chains

of tables that are ‘well joinable’, that is, connected via for-
eign keys or with good overlap on some sets of attributes,
and convert them into candidate classes and properties.
For instance, for each chain we detect the ‘leading’ table
T and relate the chain to a class by projecting it on T ’s
primary key; then, we combine names of the tables in the
chain and attributes on which they were joined to suggest
a name for this class.
In addition, BootOX automatically extends direct

mappings with metainformation about provenance. The
provenance metainformation is modelled in the mapping
assertion, adding, for instance, the source database from
which the information is extracted, and more granular in-
formation, like table and column identifiers.

URI creation. BootOX follows the good practices of the
W3C direct mapping specification to create the URI (tem-
plates) for classes, properties and individuals in order to
minimise the so-called impedance mismatch problem [1],
which is caused due to the fact that databases store data
values (e.g strings, integers, etc.) while the ontology in-
cludes objects uniquely identified by URIs. We address
the problem on the level of object generating functions dis-
cussed in Section 3.4. Our functions respect primary and
foreign keys and ensures that all the generated objects are
unique and the same object is generated when required.
Note that BootOX has also been used to assist the man-
ually creation of mappings in order to use common URI
templates for the referenced ontology classes, properties
and individuals.
The R2RML language provides mechanisms (i.e. tem-

plates) to implement the object generating functions. For
example, the basic rule to generate the URIs for the sub-
jects in a mapping is the following:

http://basens/table/{pk1}/.../{pkn}

If the table does not contain any primary key the tem-
plate URI is created using all columns in the table:

http://basens/table/{col1}/.../{coln}

When dealing with foreign keys, the URI of the object
mapping associated to the referencing table should be gen-
erated according to the URIs of the subjects for the refer-
enced table. e.g.:

http://basens/reftable/{fkcol1}/.../{fkcoln}

Exceptions apply when dealing with inheritance. In
these cases URI template generation is a bit more elabo-
rated and requires the use of internal indexes to keep track
of the URI template required for the referenced tables.

Alignment. A way to extend a bootstrapped ontology is
to align it with an existing high quality domain ontol-
ogy. Ontology alignments (also called correspondences)
between entities of two ontologies O1,O2 are represented
as a 3-tuple {e, e�, r} where e and e� are entities of O1 and
O2, respectively; r ∈ {�,�,≡} is a semantic relation [35].
If correspondences are automatically created a confidence
value c, usually, a real number within the interval (0 . . . 1]
is typically added to the mapping tuple. Confidence intu-
itively reflects how reliable a correspondence is (i.e., 1 =
very reliable, 0 = not reliable). Although there are sev-
eral possible representations for alignments, in this work
we represent them through standard OWL 2 axioms.
We have extended the ontology alignment system

LogMap [36] that aligns two ontologies O1 and O2 by
deriving OWL 2 equivalence and sub-class(property) ax-
ioms between the terms from O1’s and O2’s vocabularies
using the lexical characteristics of the terms and the
structure of the ontologies. Our extension [37, 38] is a
highly scalable solution that, in the resulting ontology O
after O1 and O2 are aligned, minimises the violations of
the conservativity principle i.e., O does not entail (many)
sub-class(property) axioms over O1’s and O2’s vocabulary
which are not already entailed by O1 or O2. When
experimenting with the Statoil databases, we noticed
that this logical guarantee is often a necessity since an
alignment O of a bootstrapped O1 with an imported
domain ontology O2 that does not preserve conservativity
gives the following side-effects: query answering over O
produces answers that are unexpected by domain experts,
and that would not be obtained if one queries O1 alone,
or O entails axioms over O2’s terms that are unexpected
and counter-intuitive for domain experts.

5.3. Query Processing Optimisation

Our query processing system relies on the two stage pro-
cess with rewriting and unfolding as described above. It
was observed [7] that a naive implementation of this ap-
proach performs poorly in practice; thus, we developed
and implemented a number of techniques to optimise both
stages of query processing, which we present in detail be-
low. We empirically tested the efficiency of our optimi-
sation techniques over EPDS and will present results on
query execution in Section 7. We also evaluated our tech-
niques in a controlled environment and our tests show that
thanks to these optimisation techniques our query process-
ing solution can dramatically outperform existing OBDA
solutions [39].
We observed that despite these optimizations, the SQL

queries UQ we produce often return answers with a signifi-
cant number of duplicate rows; below we will discuss why
this is an issue and how we addressed it.

14

Optimisation of Rewriting. We address two challenges:
(i) redundancy in RQ: fragments of RQ may be sub-

sumed by other fragments, and thus evaluation of
UQ over RDBs requires redundant computation;

(ii) inefficiency of rewriting: computation of RQ is in
the worst case exponential in the size of Q and O,
and thus its online computation is often slow for
large Q, M and O.

The main source of redundancy in RQ is that classes
(properties) can participate in multiple mappings either
directly, or indirectly via their multiple sub-classes (sub-
properties).10 To avoid this, we minimise both the map-
pings and the UCQ RQ using query containment. To ad-
dress the inefficiency, we proposed two novel techniques.
Both techniques can be applied in isolation or combined.
Our first technique is to improve computation of class hier-
archies entailed by the ontology, which the rewriting heav-
ily relies on, by applying graph reachability techniques to
a DAG-encoding of dependencies among classes. The sec-
ond one is to move part of online reasoning offline: for
all atomic queries we perform expensive rewriting up front
and compile the results of this computation into the exist-
ing mappings, and use these enriched mappings when user
queries Q are unfolded, see [40] for details.

Optimisation of Unfolding. We address three challenges
with query unfolding:
(i) redundant unions due to redundancies in the boot-

strapped ontology or mappings;
(ii) redundant joins, that come from the fact that on the

ontological level the data is modelled as a graph, i.e.,
as a ternary relation, while on the data level in RDBs
it is modelled with n-ary relations, and thus an un-
folding of RQ into SQL over an n-ary table naturally
introduces n-1 self-JOIN operations;

(iii) inefficient joins come from the so-called impedance
mismatch, i.e., on the ontological level objects are
represented with object ids URIs while in RDBs with
tuples; thus, joins in RQ are unfolded into SQL joins
over string concatenation that prevents RDBs from
the use of existing indices.

To address these issues, we developed structural and
semantic optimisation techniques. For structural opti-
misations we push joins inside the unions and special
functions (such as URI construction) as high as possible
in the query tree; we also detect and remove inefficient
joins between sub-queries. Semantic optimisations remove
redundant unions, joins, detect unsatisfiable or trivially
satisfiable conditions, etc.

OBDA Constraints. The optimizations discussed in the
previous paragraphs are based on the additional informa-
tion coming from the DB schema such as primary and for-
eign keys. Unfortunately, these optimization techniques
cannot exploit constraints that go beyond what can be

10This issue is partially tackled at the bootstrapping stage [14].

explicitly declared in the schema. For instance, the data
stored at Statoil has certain properties that derive from
domain constraints or storage policies that are not mod-
eled using DB constraints. For example, the view in the
database containing information about wellbores, in fact,
satisfies the following implicit constraints: (1) it must
contain all the wellbores in the ontology; (2) every tu-
ple in the view must contain the information about name,
date, and well (no nulls); (3) for each wellbore in the view,
there is exactly one date/well that is tagged as ‘actual’.

In [12] we show how to use this information to further
optimize UQ (please note that details of these technique
are beyond the scope of this paper and we refer the reader
to [12] for examples and further explanations). We do
so by introducing two novel classes of constraints that go
beyond database constraints. The first type of constraint,
exact predicate, intuitively describes classes and properties
whose elements can be retrieved without the help of the
ontology. The second type of constraint, virtual functional
dependency, intuitively describes a functional dependency
over the virtual RDF graph exposed by the ontology, the
mappings, and the database. These notions are used to
enrich the OBDA specification so as to allow the OBDA
system to identify and prune redundancies from the trans-
lated queries. We show in [12] that thanks to these opti-
mizations we can improve the overall performance of query
executions by orders of magnitude.

Optimisation of distinct answers. Removing duplicates
from query answers raises an interesting problem for
OBDA systems. On the one hand, OBDA theory assumes
set semantics for computation of query answers, that is,
each answer occurs only once in the answer set. On the
other hand answering queries over relational databases is
typically implemented under bag semantics, that is, any
answer can occur multiple times in the answer set. In par-
ticular, evaluation of SQL queries produced by our query
processing system returns answers with duplicates. From
our experience with the OBDA deployment at Statoil,
these duplicates bring a number of challenges: duplicate
answers appear as noise to most end-users, visualisation
systems are significantly slowed down when flooded with
repeated answers, and the large number of such answers
negatively affects network capacity and database connec-
tivity. Using the DISTINCT modifier in SPARQL queries
to remove redundant answers is unfolded into the SQL
DISTINCT, which, in our experiments, was extremely detri-
mental to performance and led to a number of queries to
time out. In order to overcome this problem, we propose to
defer the removal of duplicate tuples to the OBDA system
rather than the underlying database engine. In particu-
lar, we filter out redundant answers using predefined Java
hash functions. This simple solution outperforms SQL
DISTINCT by orders of magnitude in most cases, and opens
the door for further optimisation (see Section 7).

15

Figure 7: Query Plan.

5.4. Federated Query Execution

The unfolded query produced by the process described
in the previous section is a SQL query, that is sent for exe-
cution by the underlying RDBMS. As described in Section
2, end users often need to access information that resides in
different databases. In the discussed scenario there is need
for an underlying system that is capable of importing and
processing data from different endpoints. In certain cases
it may be preferable to take advantage of the processing
capabilities of each endpoint, in order to ship fragments of
the query for execution there and only import back an in-
termediate result, instead of the detailed data. Of course,
such a decision should be cost-based. For instance a sim-
ple policy of sending the largest possible fragment to each
end-point is often sub-optimal. Systems that put through
these tasks are known as mediators, whereas the underly-
ing database systems are known as endpoints.

Extending Exareme With Data Integration Capabilities.
Exareme is an elastic execution environment for complex
data workflows on the cloud. These data workflows in-
corporate user computations in the form of User-Defined
Functions (UDFs). Several extensions have been imple-
mented in order for the system to be able to cope with
the demanding requirements of the OBDA installation in
Statoil, whereas at the same time preserving its massively
parallel processing capabilities:

(i) its optimizer has been re-designed in order to take
into consideration common subexpressions coming
from different parts of a complex query;

(ii) special data transfer operators have been imple-
mented in order to be able to import data from end-
points;

(iii) a federated analyzer module has been implemented,
which based on the OBDA mappings, gathers statis-
tics about the external data;

(iv) pushing data processing to endpoints as a post-
optimization step is considered;

(v) caching and reuse of intermediate results can be en-
abled to exedite query processing.

In what follows we describe some of these extensions in
more detail.

Federated Analyzer. Since the Exareme optimizer is cost-
based, the first step in order to be able to make cost esti-
mations for different federated query plans, is to analyze
the columns of base tables residing in different endpoints.
This is an offline process taking place before query answer-
ing. Initially, the OBDA mappings are parsed and a list
of all base tables referenced there is obtained. This way
Exareme avoids gathering statistics for tables that cannot
show up in an unfolded SQL query. This number can be
very large for the databases considered in the Statoil envi-
ronment and this simple optimization saves a lot of compu-
tation. For each column of the obtained tables Exareme
sends to the corresponding endpoint queries that ask for
the different values, the minimum and maximum value and
the column size. This way we can obtain basic statistical
measures without having to resort to the often unfeasible
task of importing all the data.

Common Subexpression Identification. Common subex-
pression identification refers to the process of identifying
the same query fragment in different queries, or in different
parts of the same query, and the equally important task
of deciding if the specific subexpressions should be com-
puted only once and reused or not. This last decision is
not obvious, as reusing a subexpression includes the cost
of materializing the intermediate result to disk, whereas
if the tuples of the subexpression, as they are produced,
can be pipelined to the next query operator, it may be
preferable to compute it from the beginning. The decision
becomes even more complicated, as when many common

16

subexpressions exist, the choice for each one possibly af-
fects the cost regarding the choice for the rest. In a parallel
environment, the decision to reuse can be even less prefer-
able, as independent query fragments can be computed
simultaneously.
Using state of the art techniques in common subex-

pression identification proved to be crucial in evalu-
ation of OBDA queries, as these contain highly cor-
related union subqueries. Consider for example the
query shown in Figure 7. It consists of two different
unions and accesses three different endpoints. Note that
the join between tables SLEGGE EPI.WELLBORE and
SLEGGE.STRATIGRAPHIC ZONE is a common subex-
pression for these two unions. Exareme includes a
Volcano-style optimizer and models the different possible
query plans using an AND-OR graph. The optimizer im-
plements a greedy heuristic that was proposed in [41] in
order to take the aforementioned decisions.

Pushing processing to endpoints. In a data integration set-
ting where each endpoint is an RDBMS, a mediator can
take advantage of the corresponding processing capabili-
ties in order to “push” a query fragment for execution in
the endpoint and obtain an intermediate result. One could
think of a process of query decomposition where maxi-
mal fragments that can be executed in each endpoint are
identified and sent for execution. Unfortunately, this ap-
proach often leads to inefficient execution plans, as very
large intermediate result, that otherwise could be avoided,
may be produced. Consider again the example from Fig-
ure 7. The join between SLEGGE EPI.WELLBORE and
SLEGGE.STRATIGRAPHIC ZONE can be pushed to the
EPDS endpoint, but if this join leads to a very large in-
termediate result, then maybe a better query plan would
be to import each table separately and use a different
join order, by first joining one of the tables with a re-
sult coming from another endpoint. The same situation
arises for the joins between tables COREDB.SITE and
COREDB.SITE TYPE. For this reason, we examine op-
portunities for pushing processing towards the endpojnts
as a post-optimization step. This is done after an opti-
mized plan, possibly with common subexpression re-usage,
has been obtained. In such a plan, we consider pushing
fragments that only touch tables from a single endpoint,
as long as there is no sub-plan marked as materialized for
re-usage. If no plan with more than a single descendant
table is found to be beneficial to be pushed to an endpoint,
then separate requests for each base table are sent. These
requests contain only possible filters and projections for
the corresponding base table.

Caching Intermediate Results. Caching of intermediate re-
sults refers to the process of keeping results coming from
evaluation of a query for future reuse. These results cor-
respond to query fragments imported from endpoints, or
results of processing that takes place inside Exareme,
for example intermediate results chosen to be materialized

from the common subexpression identification optimiza-
tion or final results of a query. As a subsequent, possi-
bly different query is coming for evaluation, the optimizer
should choose a plan, by taking into consideration exist-
ing fragments in the cache, and estimate the cost of plans
that reuse such fragments accordingly. In the context of
data integration this can lead to important savings, as the
need of data import can be completely avoided. An evic-
tion policy that guarantees data freshness can be applied,
for example by specific timeouts. Also, it is important to
provide the user with the option to enable or disable use
of the cache on a per query basis.

5.5. Visual Query Formulation

Domain experts could meet their information needs
by posing queries via a visual query formulation system,
called OptiqueVQS [42, 43, 44, 13], choosing from a col-
lection of existing queries, and writing queries in SPARQL
directly. A SPARQL query is automatically generated
as a user interacts with OptiqueVQS. In general, Op-
tiqueVQS combines a navigational interaction (i.e., query
by navigation) style [45, 46] with graph and form-based
representation styles [47]. In this section, we will present
OptiqueVQS, which is composed of a front-end (i.e., in-
terface) and a backend component.

Interface. OptiqueVQS is composed of communicating
widgets (i.e., user-interface mashup) [48, 13]. Along with
flexibility, modularity, and adaptability, such an approach
allow us combine multiple representation and interaction
paradigms [49, 47].
In Statoil’s case, OptiqueVQS is composed of five wid-

gets: The first widget (W1 – menu-based) allows the user
to navigate through concepts of an ontology by selecting
relationships between them (see the bottom left hand side
of Figure 8). The second widget (W2 – diagram-based)
presents typed variables as nodes and object properties
as arcs and gives an overview of the query formulated so
far (see the top side of Figure 8). The third widget (W3
– form-based) presents the attributes of a selected con-
cept for selection and projection operations (see the bot-
tom right hand side of Figure 8). The fourth widget is
(W4 – form-based), is a tabular widget (see Figure 9) pre-
senting sample results. It also presents functionality to
realise sorting and aggregation operations, such as sum,
max, min, and average. The fifth widget (W5 – diagram-
based) lets the user constrain attributes by selecting values
from a map (see Figure 10). Relevant attributes are anno-
tated so as to bind the map widget to these attributes in
W3.
W1 initially lists all the concepts in the ontology and a

user starts formulating a query by selecting a starting con-
cept (i.e., kernel). The concept chosen from W1 becomes
the active node (i.e., pivot) and appears in W2 as vari-
able node. W1 then lists concept - object property pairs
pertaining to the pivot, since there is now an active node.
The user can continue adding more typed variables into

17

Figure 8: OptiqueVQS interface – an example query is depicted.

Figure 9: OptiqueVQS interface – tabular result widget and SPARQL view.

18

Figure 10: OptiqueVQS interface – another example query where a domain specific map widget is activated.

the query by selecting a pair from W1. Selected concept-
object property pair is added to the query over the pivot
and the formulated query is presented as a tree in W2.
The concept from the last chosen pair automatically be-
comes the active node (i.e., pivot), and the active node can
be changed by clicking on the corresponding variable node
in W2. The user can constrain attributes (i.e., using the
form elements) and/or select them for output (i.e., using
the “eye” icon) through W3. The user can also refine the
type of a variable node through a special multi-select form
element, called “Type”, in W3. A pin icon appears next to
each attribute where the map widget could be used (i.e.,
W5). The user clicks “Run Query” button to see exam-
ple results and apply sorting and aggregation operations
(i.e., W4). The user can view and interact with the query
in textual SPARQL mode (i.e., textual and visual modes
are synchronised) – see Figure 9. The user can also save,
modify, and load queries. An example query is depicted in
Figure 8 and the generated SPARQL query is given Fig-
ure 9 and Figure 11. Figure 10 presents another example
query, where the map widget used to constrain name at-
tribute of a variable node of type “Field”.

OptiqueVQS uses a simplified tree-shaped query rep-
resentation in order to avoid any technical jargon, for ex-
ample related to OWL and SPARQL. Each widget han-
dles a set of functionality that suits best to its representa-
tion and interaction paradigms (e.g., tabular result widget
for aggregation operations). OptiqueVQS supports tree-

SELECT DISTINCT ?c1 ?c2 ?c5 ?c3 ?c6 ?a2 ?c4 ?a1

WHERE {

?c1 ns1:type ns2:Core.

?c2 ns1:type ns2:WellboreInterval.

?c5 ns1:type ns2:CoreSample.

?c3 ns1:type ns2:WellboreInterval.

?c6 ns1:type ns2:PermeabilityMeasurementResult.

?c4 ns1:type ns2:StratigraphicUnit.

?c1 ns2:extractedFrom ?c2.

?c1 ns2:hasCoreSample ?c5.

?c2 ns2:overlapsWellboreInterval ?c3.

?c5 ns2:hasPermeabilityMeasurement ?c6.

?c3 ns2:hasUnit ?c4.

?c6 ns2:valueInStandardUnit ?a2.

?c4 ns2:name ?a1.

FILTER(regex(?a1, "BRENT", "i")). }

Figure 11: A SPARQL query generated by OptiqueVQS.

shaped conjunctive queries and queries involving aggrega-
tion, while queries involving cycles, negation, and disjunc-
tion are not supported.

Backend. The communication between the interface and
backend is realised through a REST API. It returns a
JSON object according to the interface request. The back-
end deals with accessing and serving ontology fragments
to the interface and harvests the query log and data to
improve user experience.

19

A graph projector is in the core ofOptiqueVQS’s back-
end [43, 44]. It feeds OptiqueVQS’s widgets to enable a
graph-based navigation over an ontology during the query
formulation process. Graphs are effective mechanisms to
navigate, construct, and communicate complex topologi-
cal structures for end users. End-user queries could natu-
rally be seen as graphs, since they are mostly conjunctive
and we are only dealing with unary and binary predicates.
Yet, OWL 2 axioms do not have a direct correspondence
to a graph. Even when an axiom can naturally be seen
as a graph, to the best of our knowledge there is no stan-
dard means to translate it to a graph. Therefore, in order
to to extract a suitable graph-like structure from a set of
OWL 2, we have adapted a technique called navigation
graph [50, 51]. OptiqueVQS uses on the OWL 2 rea-
soner HermiT [52] to build the navigation graph (e.g., ex-
traction of classification) in order to consider both explicit
and implicit knowledge defined in an ontology. Navigation
graph approach makes OptiqueVQS domain-agnostic as
it could run on any OWL 2 ontology without requiring
any domain specific configuration; however, one could still
implement domain specific widgets, similar to our map
widget, to offer interaction and representation paradigms
specific to a domain in order to improve the usability. An
example is OptiqueVQS deployment at Siemens for remote
monitoring and diagnostics in the context of temporal data
sources [53].
A data sampler component is also a part of the backend

and it is used to enrich an ontology with additional ax-
ioms to capture values from data that are frequently used
and rarely changed. This includes the list of values and
numerical ranges in an OWL data property range. Such
an approach allows presenting attributes in different types,
such as sliders, multi-select boxes, date pickers etc, with
respect to the underlying data. Moreover, it harvests the
query log for ranking and suggesting query extensions as
a user formulates a query, that is, the W1 and W3 lists
concepts and properties adaptively [54].

6. OBDA Deployment at Statoil

In this section we present our experience in deploying an
OBDA instance over Statoil databes. We start with the
requirements, then discuss how we developed the ontology
and mappings for the Statoil databases, and conclude with
a quality assessment of the (automatic) deployment.

6.1. Requirements

Our OBDA solution should enable efficient formulation
of information needs from Statoil geologists. In order to
achieve this, we conducted interviews with Statoil geolo-
gists and IT experts who support them by creating access
points. This gave us a few hundreds of information needs
expressed in English, that look as follows:

1. In my area of interest, e.g., the Gullfaks field, return
wellbores penetrating a specific chronostratigraphic

unit, and information about the lithostratigraphy and
the hydrocarbon content in the wellbore interval pen-
etrating this unit.

2. Show all the core samples overlapping with the Brent
Group.

3. Show all permeability measurements in Brent.

Then, we aggregated thees needs in patterns since many
of them asked about essentially the same (or very similar)
entities but relied on different concrete ‘constants’, e.g.,
several needs were about penetration of stratigraphic lay-
ers and they differed only on the names of concrete layers.
This aggregation gave us a Statoil query catalog of 73 rep-
resentative Statoil queries in SPARQL, with references to
the underlying information needs expressed in natural lan-
guage. Clearly, our collection of both information needs
and corresponding queries is not exhaustive—it is only a
sample of what geologist typically ask. At the same time,
as we verified with domain experts, the Statoil query cata-
logue provides a good coverage of topics that are typically
of interest for Statoil geologists. From this we derived the
first natural minimum requirement for the ontology and
mappings:

Requirement 1: The ontology should enable
formulation of queries corresponding to the cata-
logue’s requests and mappings should enable an-
swering these queries.

To fulfil Requirement 1, the ontology must contain all
the terms occurring in the catalogue. For example, In-
formation need 1 contains the terms wellbores, penetrat-
ing, chronostratigraphic unit, lithostratigraphy, hydrocar-
bon content, and wellbore interval. All in all the catalogue
contains more than 150 relevant domain terms. As we
verified with Statoil geologists, the terms occurring in the
catalogue are important, but, as expected, do not pro-
vide a sufficient domain coverage; that is, geologists need
many more domain specific terms for expressing their in-
formation needs. Via interviews with geologists, we deter-
mined six domains that should be reflected in the ontol-
ogy: geospatial, geometrical, enterprise, production, seis-
mic and oil related facilities, which gave the following re-
quirement:

Requirement 2: The ontology should cover a
wide range of geological domain terms including
the ones from the catalogue and the six relevant
domains.

A desired requirement of the ontology and mappings
is, not only to cover the necessary vocabulary to enable
the formulation of queries, but also to enable the correct
answering of these queries.

Requirement 3: The ontology and mappings
should lead to the expected query results in the
OBDA solution.

20

Table 2: Ontology metrics for the Subsurface Exploration (SE) ontology, and for all bootstrapped (Boot) ontologies, which are also aligned (Align)
with the SE ontology. The metrics are calculated by the OWLAPI Java API. Zero- and false-values are removed from the table to increase readability.

SE EPDS Recall GeoChemDB CoreDB OpenWorks
Boot Align Boot Align Boot Align Boot Align Boot Align

Overview
Axioms 759 433 624 434 545 15 358 16 263 73 024 73 929 1 140 2 046 212 609 213 519
Logical axioms 520 139 037 139 576 4 895 5 419 22 280 22 804 363 888 63 666 64 195
Classes 106 3 329 3 435 35 141 136 242 16 122 1 472 1 578
Object properties 49 5 560 5 609 17 66 15 64 21 70 3 734 3 783
Data properties 42 63 177 63 219 1 853 1 895 9 329 9 371 117 159 34 581 34 623
Individuals 6 1 8 1 7 1 7 1 7 1 7
Imports 1 1 1 1 1 1 1 1 1 1 1

Profiles
OWL2 � � � � � � � � � � �
OWL2 QL � � � � �
OWL2 EL � � �
OWL2 RL

Class Axioms
SubClassOf 150 12 034 12 187 122 275 442 595 46 199 4 988 5 141
Equivalent 16 1 1 2 6
Disjoint 188 188 188 188 188 188
GCI count
Hidden GCI Count 24 1 2 3 11
Max. superclasses 2 2 2 2 2 2
Avg. superclasses 1.019 1.0 1.001 1.0 1.014 1.0 1.008 1.0 1.016 1.0 1.001
Multiple inheritance 21 21 21 21 21 21

Object Property Axioms
SubPropertyOf 20 5 001 5 021 10 30 2 22 9 29 1 647 1 667
Equivalent
Inverse 12 12
Disjoint
Functional 9 9 9 9 9 9
InverseFunctional
Transitive
Symmetric 1 1 1 1 1 1
Asymmetric
Reflexive
Irrefexive
Domain 37 3 506 3 543 14 51 14 51 17 54 1 916 1 953
Range 38 3 256 3 294 17 55 15 53 21 59 2 124 2 162
SubPropertyChainOf

Data Property Axioms
SubPropertyOf 12 32 041 32 053 1 421 1 433 5 878 5 890 53 65 14 262 14 274
Equivalent
Disjoint
Functional 15 15 15 15 15 15
Domain 24 40 376 40 400 1 458 1 482 6 600 6 624 100 124 18 143 18 167
Range 20 42 823 42 843 1 853 1 873 9 329 9 349 117 137 20 574 20 594

Annotation Property Axioms
Annotations 39 222 510 222 687 8 547 8 724 41 253 41 430 612 789 109 145 109 322
Domain
RangeOf

Individual Assertions
Class 6 6 6 6 6 6
ObjectProperty
DataProperty
NegativeObjectProperty
NegativeDataProperty
SameIndividual
DifferentIndividuals

6.2. Development of Ontologies and Mappings

In order to meet the aforementioned requirements, the
ontology developed for Statoil consists of (i) A part which
is bootstrapped from the Statoil databases. For exam-
ple, running the bootstrapper over the EPDS database ex-
tracted an ontology comprising 3,329 classes, 68,737 prop-
erties, and 139,037 axioms from explicit and implicit con-

straints. See Table 2 for the complete list of ontology met-
rics. (ii) A second part, the Subsurface Exploration (SE)
ontology, developed during the Optique project to cover
parts of the petroleum subsurface exploration domain with
a special focus on the information needs (i.e. query cata-
log) to meet Requirement 1. This includes concepts and
relations for describing, e.g., fields, wells, wellbores, and

21

subsurface conditions and environments. The SE ontol-
ogy contains 106 classes, 49 object properties, 42 datatype
properties, and 520 logical axioms.

Figure 12 shows an overview of the resulting OBDA in-
stance for each of the Statoil databases together with the
(imported) SE ontology. Next we provide more details
about the creation of the OBDA instance.

The bootstrapped part helps us to meet both Require-
ment 1 and Requirement 2 in order to include a broader
set of terms which may be relevant for future informa-
tion needs covering the six indentified domains. The boot-
strapped ontologies and the SE ontology were aligned us-
ing the techniques presented in Section 5.2 (see column
Align in Table 2). Special care was taken to avoid in-
troducing unwanted consequences: for instance the align-
ment techniques will avoid adding alignment axioms that
would lead to inconsistencies, or faulty consequences like
Well � WellBore that are not supported by the input on-
tologies [37, 38] and would prevent meeting Requirement 3.

Most of the axioms in the ontologies, including all boot-
strapped axioms, fall in the OWL 2 QL profile, which is
required for OBDA to guarantee correctness in the query
rewritting (see Table 2). Examples of OWL 2 QL axioms
are NaturalGasLiquid � Petroleum (natural gas liquids are a
sort of petroleum), Wellbore � ∃hasLicense (each wellbore
has a license associated to it), and Company � ∃hasName
(each company has a name). The SE ontology contains
a few non-OWL 2 QL axioms, which we approximated in
OWL 2 QL using the techniques of [55].

In order to fulfil Requirement 3, the SE ontology was
manually linked via R2RML mappings to the data sources:
EPDS, OpenWorks, Recall, CoreDB and GeoChemDB
and a total of 75 mappings were created. The boot-
strapped mappings were also complemented with manually
create complex mappings since there were cases where the
bootstrapped mappings did not sufficiently reflect their
relation to the correspondent database in order to meet
the information needs. See Table 3 for metrics about the
manually created and bootstrapped mappings.

The column Federated contains mappings where the
source SQL query touches more than one database. These
mappings are only usable in a federated OBDA setting.
All the other mapping rules have SQL queries that each

bootstrapped

bootstrapped & manual

SE

manual

Figure 12: OBDA instance creation for a given database.

selects data only from a single database.
We try to avoid such federated mappings because of Sta-

toil policy on SQL queries: Because of the complexities in
the SQL schemas, and the rate of change, there is for each
database a single team of people who are tasked with the
writing of all SQL queries towards that database. Re-
quiring these teams to overlap is organizationally hard,
hence, no single person should have to be able to write
SQL towards more than one database. This implies that
each single SQL query also should only be towards a single
database. Future work is to explore the implementation
of SWRL rules to replace these federated mappings.
Rows under the headline Mappings give the number of

possibly non-unique instances of R2RML mapping con-
structs. Rows under the headline Database give data
about the contents of the instances of rr:sqlQuery and
rr:tableName, while the row under Ontology gives the
distinct number of uses of ontological terminology in the
mappings.
The queries in the manually created mappings involve

up to 6 tables, with an average of 3. The number of output
variables SQL queries of mappings ranges from 2 to 4, with
the average of 3. In order to develop the mappings we
analysed predefined queries used by different information
extraction tools over the Statoil databases. In particular,
we analysed the results of a set of predefined queries and
compared them with the expected results, by interviewing
Statoil domain experts. This allowed us to fragment the
predefined queries and extract small excerpts useful for
OBDA mappings. The relatively small size of the SQL
parts of mappings was dictated by two practical reasons:
to make maintenance and documenting of the mappings
easier, and to ensure efficiency of query processing.

6.3. Assessing the Quality of Our OBDA Deployment

In this section we present results with respect to the
quality of the bootstrapped assets (i.e., vocabulary, ontol-
ogy, and mappings). We have evaluated
(i) the ability of formulating queries (Requirement 1)

with the bootstrapped vocabulary (Section 6.3.1),
and

(ii) the ability of (enabling the) answering of queries with
the bootstrapped ontology and mappings (Require-
ment 3) in a controlled scenario (Section 6.3.2).

We compared BootOX to five other bootstrapping
systems: IncMap [57], Ontop [58], MIRROR [59] and
D2RQ [4]. IncMap is designed to directly map a relational
database to a target ontology, but is focused on a semi-
automatic, incremental/interactive approach rather than
direct automated bootstrappings. Ontop, MIRROR and
D2RQ follow an approach that is similar to the one em-
ployed in BootOX, with respect to the generation of a
semantic data access instance (i.e., vocabulary, ontology,
and mappings).11

11Ontop generates only vocabulary, that is, an ontology containing
only declaration axioms.

22

Table 3: Mapping metrics. Each column reports numbers for one mapping collection, which each target one data source. Unless labeled Boot.
(bootstrapped), the mapping collection is manually constructed.

Datasource: SE EPDS Recall CoreDB GeoChemDB Open Works Federated
Boot. Boot. Boot. Boot

Mappings
rr:TriplesMap 75 3111 5 34 17 15 11 135 10 1303 1
rr:sqlQuery 75 0 4 0 15 0 11 0 9 0 1
rr:tableName 0 3111 0 34 0 15 0 135 0 1291 0
rr:TermMap 189 0 14 0 39 0 18 0 25 0 2
rr:PredicateMap 0 0 0 0 0 0 0 0 0 0 0
rr:ObjectMap 114 43882 9 1472 22 117 7 6614 15 20071 1
rr:GraphMap 0 0 0 0 0 0 0 0 0 0 0
rr:PredicateObjectMap 114 43882 9 1472 22 117 7 6614 15 20071 1
rr:RefObjectMap 0 137 0 0 0 0 0 0 0 181 0
rr:Join 0 0 0 0 0 0 0 0 0 0 0
rr:subject 0 0 0 0 0 0 0 0 0 0 0
rr:predicate 48 43882 7 1472 12 117 7 6614 12 20059 1
rr:object 0 0 0 0 0 0 0 0 0 0 0
rr:class 26 3111 0 34 7 15 5 135 6 1279 0

Database
Sum tables 150 3111 4 34 29 15 39 135 15 1291 3
Sum distinct tables 44 3111 1 34 7 15 9 135 7 1291 3
Min. joins per triplemap 0 0 0 0 0 0 0 0 0 0 2
Max. joins per triplemap 6 0 0 0 4 0 3 0 3 0 2
Avg. joins per triplemap 1.0 0.0 0.0 0.0 0.933 0.0 2.545 0.0 0.667 0.0 2.0

Ontology
Sum distinct ontology terms 74 46993 7 1506 19 132 12 6749 18 21338 1

6.3.1. Coverage of Statoil Query Catalog

The query catalog at Statoil currently includes 73
queries that contain representative information needs from
Statoil geologists. For the query coverage experiment we
selected a subset of 60 queries for which the required data
is stored in the EPDS database.
Since BootOX and IncMap rely on an external domain

ontology we selected an state-of-the-art ontology in the oil
and gas domain: The Norwegian Petroleum Directorate
(NPD) ontology [60]. Note that we did not use for this
experiment the SE ontology since its creation was driven
by the information needs and hence its coverage with re-
spect to the Statoil query catalog is almost perfect. The
target of this experiment is to evaluate an initial deploy-
ment with respect to Requirement 1 where a specialised
ontology (i.e. SE ontology) may not exixt.
We bootstrapped ontological vocabulary from the rel-

evant parts of EPDS using BootOX, MIRROR, Ontop
and D2RQ. Note that IncMap relies on the vocabulary of
the available domain ontology. BootOX, unlike Ontop,
MIRROR and D2RQ, includes a built-in ontology align-
ment system which allows to import the vocabulary of the
domain ontologies into the bootstrapped ontology.

The results of the query catalog coverage are sum-
marised in Figure 13. The first column represent the cover-
age of the bootstrapped ontologies computed by BootOX
(without importing the domain ontology), Ontop, MIR-
ROR and D2RQ. Since all four systems rely on the direct
mapping directives, the bootstrapped vocabulary is, apart
from minor differences, basically the same. The middle
columns represent the coverage of the vocabulary of the
domain ontology, which is equal to the coverage of IncMap.
The third column shows the coverage results achieved by
the ontology bootstrapped by BootOX including import-
ing. Together with domain experts we performed a man-
ual assessment of each match for both classes and proper-
ties. The results of our assessments are also in Figure 13
in the outer circles. For example, 44% of the classes in
the query catalog has a good lexical intersection (greater
or equal 0.8) with terms of the ontology bootstrapped by
BootOX; furthermore, 29% of the classes are fully cov-
ered (i.e., true positives), while 19% of the matches are
semi-true positives, and 19% are false-positives (i.e. the
suggested matches between query catalog classes and on-
tology classes are wrong for domain experts).

The experiments show that the bootstrapped ontologies

23

Coverage
Classes
Query
Catalog

Total: 113

Coverage
Properties
Query
Catalog

Total: 21

Boots. Ontology (without importing)

15%

24%

20% 24%
17%

18%

81%

9%

52%

19%
19%

Domain Ontology

21%

6%9%

18%

3%

15%

38%

5%

5%
38%

BootOX (with importing)

29%
19%

19%

32%12%

23%

81%

9%

52%

19%
19%

Figure 13: Coverage of terms from the Statoil query catalog with terms from ontologies. Inner pie charts show coverage by lexical confidence
using I-SUB [56]: in [0.9, 1.0], in [0.8, 0.9), in [0.6, 0.8). Outer pie charts represent the manual verification of the quality of the terms
with a coverage above 0.6: true positive, semi-true positive, false positive. Note that semi-true positives are not clear-cut cases where
the ontology term has a broader or narrower meaning with respect to the query term.

without importing had a higher coverage than the domain
ontologies in isolation, e.g., 39% of query class coverage
against 27%. These results suggest that there is an ade-
quate number of table and column names with potentially
adequate semantic relations with the terms that domain
experts at Statoil have in mind when they access data,
and thus, the ontology vocabulary computed by the on-
tology bootstrappers is indeed relevant to query formula-
tion. Nevertheless, the domain ontologies naturally com-
plement the vocabulary obtained from the database and
hence BootOX is able to bootstrap an ontology with bet-
ter coverage over the query catalog than the ones generated
by Ontop, MIRROR or D2RQ. For example, 48% of the
classes in the catalog are fully or partially covered in the
bootstrapped ontology computed by BootOX.

6.3.2. Query Answering in a Controlled Scenario

In this section we assess the quality of the (automati-
cally) bootstrapped ontology and mappings to enable the
answering of queries in a controlled scenario.12

To this end we ran experiments with a recently re-
leased relational-to-ontology benchmark suite, RODI [15,
61], comparing BootOX to IncMap, Ontop, MIRROR,
D2RQ, and COMA++ [62]. RODI is designed to test
relational-to-ontology mappings end-to-end: it provides an
input database and a target ontology and requests com-
plete mappings or mapped data to query. RODI is based
on scenarios, with each scenario comprising several query
tests. While RODI is extensible and can run scenarios in
different application domains, it ships with a set of default
scenarios that are designed to test a wide range of fun-
damental relational-to-ontology mapping challenges in a
controlled fashion. The effectiveness of mappings is then
judged by a score that mainly represents the number of
query tests that return expected results on mapped data.

12Note that assessing the quality of the bootstrapped ontology and
mappings in an open scenario like Optique requires a huge involve-
ment of domain experts, thus we leave it for future work.

IncMap is designed to automatically map the target
ontology directly to the input database. COMA++ is
also an inter-model matching system, while BootOX ap-
proached this task in two steps: first, it bootstrapped an
intermediate ontology and mappings from the database.
Then, it aligned this intermediate, bootstrapped ontology
to the target ontology as provided by the benchmark. As
mentioned in Section 6.3.1, neither Ontop, MIRROR nor
D2RQ include a built-in ontology alignment system to sup-
port the importing of the target ontology provided by the
benchmark. In order to be able to evaluate these systems
with RODI, we aligned the generated ontologies by On-
top, MIRROR and D2RQ with the target ontology using
the LogMap system in a similar setup to the one used in
BootOX.

Overall, the two most specialized and actively developed
systems, BootOX and IncMap, outperform the other ex-
isting bootstrapping systems (see [61] for details). In the
following we focus on the results obtained in the Oil &
Gas scenario. This scenario includes an actual real-world
database and ontology, in the oil and gas domain: The
Norwegian Petroleum Directorate (NPD) FactPages [60].
Our test set contains a small relational database with a rel-
atively complex structure (70 tables, ≈1,000 columns and
≈100 foreign keys), and an ontology covering the domain
of the database. The database is constructed from a pub-
licly available dataset containing reference data about past
and ongoing activities in the Norwegian petroleum indus-
try, such as oil and gas production and exploration. The
corresponding ontology contains ≈300 classes and ≈350
properties. A total of 443 queries have been compiled in
this scenario to cover all of the non-empty fields in the
database.

Table 4 shows the average results of the bootstrapping
systems for the oil & gas scenario. A closer look to the ob-
tained results by BootOX revealed that, out of the 443
queries, 19 were perfectly answered, 11 returned all the
expected tuples but also unexpected tuples, 23 returned

24

Table 4: Overall scores based on average of per-test F-measure. Best numbers per scenario in bold print.

Scenario BootOX IncMap -ontop- MIRROR COMA D2RQ

Oil & gas domain 0.14 0.12 0.10 0.00 0.02 0.08

Table 5: Score break-down for queries that require 1:n class matches.

Scenario
BootOX IncMap -ontop- MIRROR COMA D2RQ

1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3 1:1 1:2 1:3

Oil & gas domain 0.17 0.11 0.07 0.20 0.01 0.03 0.10 0.09 0.07 0.00 0.00 0.00 0.03 0.00 0.00 0.11 0.00 0.07

an incomplete set of tuples, and the others returned an
empty set of results. A complex feature resulting from the
structure of the NPD database and ontology are a high
number of 1:n matches, i.e., concepts or properties in the
ontology that require a UNION over several relations to
return complete results, affected the quality of the results
for all bootstrapping systems. Table 5 shows the score
break-down for queries that require 1:n class matches. The
results, although far from optimal, show that the OBDA
assets generated in a completely automated fashion, as in
BootOX, can already produce competitive results for a
number of queries in a real-world scenario. As mentioned
in Section 5.2, these OBDA assets enable a (preliminary)
deployment of an OBDA system. However, they require
further manual assessment by ontology engineers and do-
main experts.

7. Query Answering over OBDA Deployment in
Statoil

In this section we present query evaluation experiments
with our OBDA solution over EPDS and NPD FP. We
start with the requirements.

7.1. Requirements

The goal of our OBDA deployment is to make gathering
of data from EPDS more efficient; this leads us to the next
requirement:

Requirement 4: Queries from the Statoil cata-
logue expressed over the ontology should be much
simpler than the data queries in corresponding
access points.

We start with analysing the structure of queries from
the Statoil catalogue. Most of them, 73%, are either lin-
ear or three-shaped conjunctive queries, the others con-
tain aggregate functions and negation. No query in the
catalogue has a cycle. Expressing them over the ontology
requires from 3 to 13 ontological terms, and the longest
query contains 23 terms. In Figure 14, we illustrate the
queries from the catalogue that correspond to Informa-
tion need 3 from Section 6 expressed over the ontology.
These queries are quite simple and contain 8 and 13 terms

only. At the same time, the Statoil access points corre-
sponding to these two queries are based on two complex
SQL queries QIN2 and QIN3, where QIN2 involves 7 tables
and 24 statements in the WHERE clause with 7 technical
statements of the form ‘T.A is not null’ that ensure cor-
rectness of query execution, and 10 joins; QIN3 involves
14 tables and 38 statements in the WHERE clause with 9
technical statements and 18 joins. Due to the space limit,
we do not show here QIN2 and QIN3. This provides clear
evidence that the catalogue queries over the ontology are
much simpler than the corresponding access point queries.
Moreover, expressing catalogue queries over the ontology
is relatively easy and could be done quite quickly by IT
experts—we did it in one day. Finally, as we will see in
Section 8 geologists can formulate these queries relatively
quickly using OptiqueVQS.

Requirement 5: Execution time of queries from
the Statoil catalogue over our OBDA deployment
should be similar to the data extraction time of
the corresponding access points even in the case
of data federation scenario.

As shown in sections 7.2 and 7.4, the OBDA solution
at Statoil currently covers most information needs with
average execution times of about two minutes for the fed-
eration setup, and under one minute for the EPDS setup.
This is a huge improvement in comparison to the time
needed in order to setup a new access point as described in
Section 2, but it is also comparable to the time needed for
end users to get information from existing access points,
with parameterized queries for example. As effort to cover
all the remaining information needs is ongoing, we believe
that execution times for the rest will not be much different
from the existing ones. In section 10 we discuss some work
in progress and ideas for future improvements.

7.2. Running Queries over EPDS

We conducted three sets of experiments with the OBDA
deployment using the Statoil query catalogue, and ontol-
ogy and mappings relevant for the queries in the catalogue.
We aim to measure the performance gain given by our op-
timizations, in particular, in this work we focus on the op-
timization to eliminate duplicates and the optimizations
based on OBDA Constraints (c.f. Section 5.3).

25

Information Needs in SPARQL Notation Textual Description

QIN2:

SELECT ?x1 WHERE {

?x1 a Core; extractedFrom ?x2.

?x2 a WellboreInterval;

overlapsWellboreInterval ?x3.

?x3 a WellboreInterval; hasUnit ?x4.

?x4 a StratigraphicUnit; name ’BRENT ’.

}

Give me all the wellbore cores ex-
tracted from a wellbore interval x2,
such that x2 overlaps with another
wellbore interval x3, whose strati-
graphic unit is named “BRENT”.

QIN3:

SELECT ?x5 ?x6 ?y1 WHERE {

?x1 a Core; extractedFrom ?x2.

?x2 a WellboreInterval; hasCoreSample ?x5.

?x5 a CoreSample;

hasPermeabilityMeasurement ?x6.

?x6 a PermeabilityMeasurementResult;

valueInStandardUnit ?y1.

?x2 overlapsWellboreInterval ?x3.

?x3 a WellboreInterval; hasUnit ?x4.

?x4 a StratigraphicUnit; name ’BRENT ’.

}

Give me all the wellbore cores as
in QIN2, along with all the perme-
ability measurements of their sam-
ples, and the values of these mea-
surements in standard unit.

Figure 14: Information needs from Section 6 in English and expressed over the ontological vocabulary using SPARQL notation

Experiments Setting. In this section we present the re-
sults of testing the Ontop system over the Statoil setting
introduced in the previous sections.

In our experiments, the queries were executed sequen-
tially on a HP ProLiant server with 24 Intel Xeon CPUs
(X5650 @ 2.67 GHz), 283 GB of RAM. Each query was
evaluated three times and we took the average. We con-
sider that a query times out if the execution time is greater
than 20 minutes.

Experiments with different DISTINCT Strategies.
The results are presented in the top two plots of Figure 15.

In the first set of experiments, that we refer to as noDist,
we executed queries as they appear in the catalogue, while
in the other two sets we executed these queries with the
DISTINCT modifier in the SPARQL query, where in dbDist
experiments DISTINCT is processed by the database engine,
while in obdaDist by the OBDA engine, as discussed in
Section 5.3.

In the noDist experiment, 17 out of 60 queries timed out.
Out of the successful 43, for 2 queries the time is less than
1s, for 3 queries it is between 2m and 6m, while for most
queries it is between 3s and 2m; the average time is 36.5s
and the median is 12.5s. These numbers are impressive,
as the SQL queries produced by the OBDA system and
sent to EPDS are large: they have on average 51k charac-
ters and the largest query is 275k characters. Note that
execution time here does not include the time for rewrit-
ing and unfolding of SPARQL queries, but only the actual
execution of the resulting SQL queries; the maximum un-
folding time is 187ms which does not add a significant time
overhead to the reported query execution time. In order

to understand how good the times reported in Figure 15
are for Statoil geologists, we gathered statistics on execu-
tion time for queries behind the access points available in
Statoil. For the ones that correspond to the Statoil cat-
alogue, execution time over EPDS is on average several
seconds, which is comparable to the numbers in our ex-
periments. Moreover, in general for the simplest access
points the execution takes from seconds to minutes, and
for the ones corresponding to complex analytical tasks it
can take overnight; thus, the response time for even the
slowest of our queries should not be too slow for Statoil
geologists.

We also analysed why some of our queries require longer
execution times than others, and why some queries failed,
i.e., timed out.

A common pattern in the SQL queries that is responsible
for slowing down execution time is the presence of redun-
dant subqueries in the unfolding that are not detected by
the optimisation techniques discussed in Section 5.3, and
that introduce redundant answers. In fact, we found out
that the answer sets for 30 out of 43 queries that did not
time out contained duplicates; among them, the mean ra-
tio of redundant answers is 51.6% while the maximum is
99.8% or 83k redundant answers.

In the dbDist obdaDist experiments we eliminated the
redundant answers at a reasonable cost: execution times
of dbDist and obdaDist are similar to noDist. Moreover,
obdaDist outperforms dbDist in 67% cases, and in 2 cases
dbDist execution gave a time out, while obdaDist never did
so, which shows the benefits of our approach over dbDist.

26

5 10 15 20

0.1s
1s

10s

20m

EPDS

25 30 35 40

0.1s
1s

10s

20m

0.1s
1s

10s

20m
DB2 NPD5

q10 q22 q23 q24 q25 q28

0.1s
1s

10s

20m
PostgreSQL NPD5

0.1s
1s

10s

20m
DB2 NPD500

q10 q22 q23 q24 q25 q28

0.1s
1s

10s

20m
PostgreSQL NPD500

noDist dbDist obdaDist

Figure 15: Experiments with different strategies for handling the DISTINCT modifier.

Experiments using OBDA Constraints. Observe
that by a smart use of DISTINCT we removed the redun-
dant answers, but not the redundant subqueries in the
unfolding that were introducing these redundant answers.
More precisely, the main reason for time-outed or slow
queries were redundant self-joins and unions in the un-
folded query. The problem comes from the fact that the
optimization techniques discussed in Section 5.3 cannot
exploit constraints that go beyond what can be explicitly
declared in the database schema. In the next paragraph
we show how this problem can be tackled by using OBDA
constraints.

We ran the experiments with 4 exact predicates and
15 virtual functional dependencies, found with automatic
tools and validated by database experts. The 60 SPARQL
queries have been executed over Ontop with and without
the optimisations for exact predicates and virtual func-
tional dependencies.

The results are summarized in Table 6 and Figure 16.
We can see that the proposed optimisations allow Ontop
to critically reduce the query size and improve the per-
formance of the query execution by orders of magnitude.
Specifically, in Figure 16 we compare standard optimisa-
tions with and without the techniques presented in [12].
Observe that the average successful query execution time
is higher with new optimisations than without because the
number of successfully executed queries increases. With
standard optimisations, 17 SPARQL queries time out.
With both optimisations enabled, only four queries still
time out, two of which do not display a change in the
unfolded SQL. These two refer to a data property that

is defined by an SQL query that contains a custom user-
defined Java function (UDF) that Ontop cannot optimise.
Without this UDF function, the queries can be executed
in less than 2 minutes. In the other 2 queries, the tuning
techniques do help to decrease their size but this did not
lead to a performance improvement observable within the
timeout. We report a 54% improvement of the median
time, witnessing the fact that the performance improve-
ment was observed on many queries of the catalogue.

The improvements are due to the fact that the queries
sent to EPDS were further optimised due to the con-
straints. In fact, the number of unions and joins in the
unfoldings fell of 34% and 65%, respectively. In other
words, 34% and 65% of the joins and unions in the un-
foldings from the previous paragraph were redundant. As
a result, a total of 27 SPARQL queries get a more com-
pact SQL translation with constraints-based optimisations
enabled. The largest proportional decrease in size of the
SQL query is 94%, from 171k chars, to 10k. The largest
absolute decrease in size of the SQL is 408k chars. Note
that the number of unions in the SQL may decrease also
only with VFD-based optimisation. Since the VFD-based
optimisation removes joins, more unions may become syn-
tactically equivalent and are therefore removed. The max-
imum measured decrease in execution time is on a query
that times out with standard optimisations, but uses 3.7
seconds with new optimisations.

The results for this experiment were obtained without
the improved handling of DISTINCT that was discussed in
the previous paragraph. By removing redundancies, in
fact, we also eliminated most of the redundant answers

27

Table 6: Results from the tests over EPDS.
std. opt. w/VFD w/exact predicates w/both

Number of queries timing-out 17 10 11 4
Number of fully answered queries 43 50 49 56
Avg. SQL query length (in characters) 51521 28112 32364 8954
Average unfolding time 3.929 s 3.917 s 1.142 s 0.026 s
Average total query exec. time with timeouts 376.540 s 243.935 s 267.863 s 147.248 s
Median total query exec. time with timeouts 35.241 s 11.135 s 21.602 s 14.936 s
Average successful query exec. time (without timeouts) 36.540 s 43.935 s 51.217 s 67.248 s
Median successful query exec. time (without timeouts) 12.551 s 8.277 s 12.437 s 12.955 s
Average number of unions in generated SQL 6.3 3.4 5.1 2.2
Average number of tables joined per union in generated SQL 21.0 18.2 20.0 14.2
Average total number of tables in generated SQL 132.7 62.0 102.2 31.4

0.1 s

10 s

20 m

Q
u
e
ry

e
x
e
c
u
ti
o
n

ti
m
e

standard optimizations standard optimizations + VFD + exact predicates

Figure 16: Comparison of query execution time with standard optimisations (Log scale).

for the queries in the catalog, making the impact of the
DISTINCT modifier irrelevant.
For reference, Table 7 shows some more detailed statis-

tics about executing the query catalogue at statoil over
EPDS (with both optimizations enabled). This is unfor-
tunately based on a different experiment than Table 6,
with newer mappings and software, so the numbers differ
somewhat, although the trends are similar.

7.3. Running Queries in Controlled Environment

We also conducted experiments in a controlled envi-
ronment, which is important since EPDS is a production
server, and hence the load on the server varies constantly
and affects the results of experiments. For controlled
experiments we used our own server and the NPD bench-
mark [39], a benchmark for OBDA systems. Compared to
EPDS, our controlled setting contains smaller datasets:
from 240MB to 25GB with +1.3B triples. We ran the
experiments in an HP Proliant server with 24 Intel Xeon
CPUs (144 cores@3.47GHz), 106GB of RAM and five
1TB 15K RPM HD using Ubuntu 12.04 64-bit edition.
The tests were performed using DB2 and PostgreSQL as
underlying database engines.

Experiments with Different DISTINCT Strategies. In
the lower four plots in Figure 15 we present noDist, db-
Dist, and obdaDist experiments with 6 NPD queries whose
performance was affected by the use of DISTINCT. Each
experiment was conducted over two datasets: NPD5 and
NPD500 corresponding to the scaling of NPD 5 and 500
times, and the results are presented separately for Post-
greSQL and DB2. Note that there are 30 queries in the
last version of the NPD benchmark (v1.7), while we report
experiments with only the ones where the use of DISTINCT
had an impact (positive or negative) on performance.

Our experiments show that execution of the 6 queries
without DISTINCT is in most cases under 1s. At the same
time if one uses DISTINCT in a naive way, by delegating
it to the database engines, it is extremely detrimental to
performance, leading even more queries to time out (see
dbDist experiments). Nevertheless, with our treatment
of DISTINCT (see obdaDist), in most cases the queries
perform orders of magnitude better than with the naive
implementation; as in the EPDS case, the optimisation
seems to be more effective when the ratio of redundant
answers is high, e.g., the highest ratio of redundant
answers is 90% for query q24, and the mean ratio for the
queries is around 50%.
Importantly, compared to queries without DISTINCT,

the overhead of removing redundancy with our techniques
is small. In some cases the execution time in obdaDist
was even better than in noDist because the number of the
returned results shipped to the end user is significantly re-
duced. However, there is one interesting exceptional case
where the first query in dbDist over PostgreSQL (and the
last query over DB2) performs better than noDist and
obdaDist. This phenomenon still requires further investi-
gation.

Experiments using OBDA Constraints. In the NPD
settings we did not identify constraints able to signifi-
cantly improve the performance of query evaluation for
the queries in the catalog. This suggests that some queries
of the benchmark are inherently hard and, and that more
sophisticated techniques need to be devised in order to
further optimise their unfoldings.

7.4. Experiments for the Federated Setting
In this section we present the query results for running

the Statoil query catalog using Exareme as the federa-
tion engine. Queries are accessing the following databases

28

Table 7: Statistics from executing the query catalogue over EPDS with optimizations enabled

Mean Median Max Min
SPARQL query size (num chars) 462 456 1110 89
SQL query size (num chars) 4283 2547 37788 0
Unfolding time, ms (with timeouts) 23 15 145 0
DB exec time, s (with timeouts) 89 1.3 3600 0
Total time, s (with timeouts) 147 4.2 3600 0.1
Unfolding time, ms (timeouts omitted) 20 13 131 0
DB exec time, s (timeouts omitted) 36 0.8 508 0
Total time, s (timeouts omitted) 58 2.9 1238 0.1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

1s

10s

100s

1000s

Exareme Federation LogScale

No Cache Cache

Figure 17: Execution Times for Federated Scenario (With and Without Query Cache)

described in Section 2: (i) EPDS (ii) Recall (iii) CoreDB
(iv) GeoChemDB (v) OpenWorks (vi) Compass
In total, 81 queries were executed with a 1000 seconds

timeout under two different setups: with and without
caching of intermediate results. In the second setup, exe-
cution started with empty cache and queries were executed
sequentially, according to their numbering in the query
catalog. Out of all 81 queries, 66 were executed success-
fully within the time limit and only seven of them needed
more than four minutes. The average time for successful
queries in the first setting was 135.6 seconds, whereas in
the second setting 101.4 seconds. All results are presented
in Figure 17 (Times are in seconds). For the experiments,
Exareme was installed on a cluster of eight virtual ma-
chines, running in a protected subnet at Statoil. Each vir-
tual machine contains 8 GB of RAM and two processing
cores.

8. Visual Query Formulation at Statoil

In this section we evaluate and present our query for-
mulation approach at Statoil.

8.1. Requirements

A set of site visits and user interviews have been con-
ducted to collect design requirements. We have conducted
a literature survey [49, 63] to identify best practices and

design patterns. Finally, the queries in the query catalogue
are translated into actual queries (97 queries in total in-
cluding alternative formulations), and then analysed [44].
Accordingly, the following three main dimensions [47] have
been taken into consideration for the design and implemen-
tation of OptiqueVQS:

(i) User synopsis: The target group at Statoil are do-
main experts, who have extensive domain knowledge.
However a majority of domain experts lack technical
skills and knowledge such as on databases, program-
ming, and query languages.

(ii) Interaction synopsis: The demand for information
is frequent and information needs are varied. More-
over, domain experts often have unpredictable needs
in terms of the data they are interested to extract.

(iii) Task synopsis: Domain experts’ information needs
are often structurally complex, which require joining
multiple concepts. According to the query catalogue
73% of queries require join of more than 3 concepts
and 41% require join of more than 6 concepts.

Accordingly, the following requirements have been
reached:

Requirement 6: Visual query formulation tool
should support a broad range of users, task types,
and interaction routines.

29

Figure 18: A linear conjunctive query formulated by domain experts in the Statoil experiment.

Figure 19: A tree-shaped conjunctive query formulated by domain experts in the Statoil experiment.

Figure 20: Another tree-shaped conjunctive query formulated by domain experts in the Statoil experiment.

Our survey revealed that a multi-paradigm design com-
bining multiple representation and interaction paradigms
is key to address a broad range of user groups having fre-
quent, unpredicted and sophisticated information needs
[47, 64]. According to a framework proposed by a Catarci
et al. [47], a multi-paradigm user-interface having a
diagram-based paradigm in the core supported by form-
based and iconic representation paradigms is needed.

Requirement 7: Domain experts should be able
to formulate frequently needed query types that
are comparatively less complex.

According to the Statoil query catalogue, 83% percent of
queries are conjunctive and 70% are tree-shaped conjunc-
tive queries. Therefore, tree-shaped conjunctive queries
need to be primarily supported.

Requirement 8: Domain experts should be sup-
ported with domain specific components for im-
mediate grasping and innate user reactions.

Data sources at Statoil have a spatial dimension; there-
fore, domain experts could greatly benefit from an inter-
action mechanism where maps are used. This requires us
to provide a domain specific map component to address
spatial data sources.

OptiqueVQS meets all these requirements as it is com-
bines multiple representation and interaction paradigms

through various widgets including a map widget. Cur-
rently, 67% of the queries in the query catalogue are sup-
ported by OptiqueVQS, that is, tree-shaped conjunc-
tive queries and queries with aggregation (i.e., excluding
queries with negation).

8.2. Evaluation

A user experiment has been conducted with a boot-
strapped NPD Factpages ontology to measure the ef-
ficiency and effectiveness of domain experts with Op-
tiqueVQS [43].
In total, the ontology includes 253 concepts, 208 re-

lationships (including inverse properties), and 233 at-
tributes. A total of three representative participants (ge-
ologists) took part in the experiment. None of the partic-
ipants had knowledge on semantic web technologies and
only one of them had advanced IT skills. One participant
did not use any similar query tools, while others have some
familiarity. Participants completed following tasks during
the experiment, given at most three attempts for each task,
while being observed by an observer:
(i) List all fields.
(ii) What is the water depth of the “Snorre A” platform

(facility)?
(iii) List all fields operated by “Statoil Petroleum AS”

company.
(iv) List all exploration wellbores with the field they be-

long to and the geochronological era(s) with which
they are recorded.

30

(v) List the fields that are currently operated by the com-
pany that operates the “Alta” field.

(vi) List the companies that are licensees in production
licenses that own fields with a re-coverable oil equiv-
alent over more than “300” in the field reserve.

(vii) List all production licenses that have a field with a
wellbore completed between “1970” and “1980” and
recoverable oil equivalent greater than “100” in the
company reserve.

(viii) List the blocks that contain wellbores that are
drilled by a company that is a field operator.

(ix) List all producing fields operated by “Statoil
Petroleum AS” company that has a wellbore con-
taining “gas” and a wellbore containing “oil”.

Total of 27 tasks were completed by the participants
with 84 percent correct competition rate and 69 percent
first-attempt correct completion rate. In average, a task
took 1.4 attempts and 243 seconds to complete. Fig-
ure 18, Figure 19, and Figure 20 represent tasks v, vii and
ix respectively. The results suggest that domain experts
could translate their information needs into queries with
high effectiveness and efficiency by using OptiqueVQS.
One prominent wish from the domain experts is the abil-
ity to connect concepts which are not directly linked.
That would require OptiqueVQS to find and offer pos-
sible paths combining two distant concepts. Since Op-
tiqueVQS employs a graph-based approach, such a solu-
tion is technically feasible; however, a mechanism to iden-
tify most relevant paths is required.

Finally, in Appendix A, we present a query formulated
in our OBDA system using OptiqueVQS and also how this
query may look like in SQL if it was formulated by an IT
expert. An IT expert at Statoil estimated that he would
need a full day to extract similar information needs with
the existing tools, while it takes less than 10 minutes with
OptiqueVQS.

9. Integration in Statoil’s Infrastructure

9.1. Installation of the Platform at Statoil

Statoil has made available ten servers exclusive to the
Optique project. Two of the servers are dedicated to run-
ning, respectively, a stable and a test version of the Op-
tique platform, while the other eight servers are set up for
the Exareme database system. One of the eight Exareme
servers acts as master and handles the communication
with the Optique platform servers and the remaining the
servers in the Exareme clustre. The Exareme servers com-
municate with Statoil databases using the ordinary Java
Database Connectivity (JDBC) interface. Statoil users in-
teract with the platform via hypertext transfer protocol
(HTTP/HTTPS) and may be authenticated through an
lightweight directory access protocol (LDAP) service. An
overview of the system architecture of these servers can be
seen in Figure 21.

Figure 21: Optique platform server architecture at Statoil

9.2. Integration with GIS tools

The Optique platform is integrated with GIS client tools
at Statoil using the Linked Open Data for Web Feature
Services Adapter (LOD4WFS)13[65]. The adapter is used
to translate the result of SPARQL SELECT queries into
Web Feature Services (WFS) that may be directly read
by GIS tools. The adapter installed at Statoil is set up
to syncronise with the queries in the collection of queries
registered in the Optique platform that contain geograph-
ical data. Statoil users may hence use the OptiqueVQS
to formulate queries that output geographical data, save
the query to this collection, and then immediately execute
the query from the GIS client tool where the results of the
query will be displayed. Figure 22 shows a screenshot that
illustrates what the results of querying from a GIS client
tool may look like.
The list of available queries/WFS layers that may be

fetched from the Optique platform are also available di-
rectly from the GIS tool. This usage pattern shows
how the Optique platform can be used to efficently share
queries across the enterprise.

10. Lessons Learned and Future Work

During the course of the project with Statoil we had
a unique opportunity to deploy OBDA technology in a
real industrial setting, to understand the limitations of
the current technology, to address these limitations, and
to get new ideas for further research. Our OBDA solution
for Statoil shows a great potential to improve efficiency of
data gathering for geologists by allowing them to (i) ef-
ficiently express information needs as ontological queries

13https://github.com/jimjonesbr/lod4wfs

31

Figure 22: An image of the GIS tool ArcGIS showing how results of queries computed by the Optique platform can be integrated in commonly
used client tools at Statoil. The image is manipulated to protect the privacy of Statoil’s data.

and (ii) efficiently execute these queries over the OBDA
deployment.

Regarding Item (i), our experiments show that, al-
though we achieved our objectives, there is still room for
improvement. Indeed, our OBDA deployment addresses
Requirements 1–3 from Section 6: it has enough ontolog-
ical terms to express queries in the query catalogue, and
they all are ‘connected’ to the Statoil databases via map-
pings (thus addressing Req. 1); and the ontology underly-
ing the deployment has a wide range of terms coming from
several respected sources (thus addressing Req. 2). Fur-
thermore, our experiments in a controlled scenario (Sec-
tion 6.3.2) showed competitive results of the fully auto-
matic deployment in a real scenario. The manually cre-
ated ontology and mappings aimed at complementing the
automatically created assets in order to adress Require-
ment 3 from Section 6. Of course, the resulting ontology
by no means gives an exhaustive coverage of the oil and
gas domain, but we see it as a good starting point for de-
veloping a more sophisticated ontology, and as a suitable
point of entry for OBDA to Statoil’s databases. More-
over, from the research point of view, we plan to develop
ontology bootstrapping techniques that can be more tar-
geted to specific scenarios, e.g., that could work not only
with database schemata and data, but also with log files
of queries, precomputed views and other assets specific for
a given domain or scenario.

Finally, the OptiqueVQS meets all the requirements

presented in Section 8. It allows a broad range of users to
formulate a range of varied and sophisticated information
needs into queries (Req. 6). Domain experts are able to
express a significant number of queries with OptiqueVQS
(i.e., 67%), that is, tree-shaped conjunctive queries with
aggregation (Req. 4 and 7). Moreover, OptiqueVQS
could accommodate domain specific widgets, i.e., map wid-
get in the Statoil case, to offer more natural interaction
paradigms (Req. 8). On the one hand, we plan to gradually
increase the expressiveness level of OptiqueVQS by in-
troducing new widgets or mechanisms; that could include
simpler forms of negation, disjunction and cycles. On the
other hand, we plan to combine alternative query for-
mulation paradigms (i.e., multi-perspective). Currently,
SPARQL mode is editable and synchronised with visual
mode and similarly, for example, a natural language query
formulation widget could be added and sychnonised with
the visual mode.

Regarding Item (ii), the execution time of most queries
from the Statoil catalogue was impressive and compara-
ble to the performance of Statoil’s existing access points,
thus addressing Requirement 5 from Section 7. Our treat-
ment of DISTINCT and our use of OBDA constraints led to
a significant improvement in performance in comparison
to standard processing in OBDA systems. Moreover, our
federated query planning techniques showed that even in a
federated setting we can answer queries in less then 20 min-
utes. Note that under 20 minutes for complex federated

32

queries is fast: currently many complex Statoil queries
(behind access points) take (in average) overnight to be
executed. We are currently investigating further optimiza-
tion techniques based on a cost model exploiting statistics
of concept and property definitions in the mapping and
the structure of the SPARQL query. We are also studying
optimization techniques dedicated for UDFs by treating
them in isolation from other parts of the query. Besides,
we plan to conduct experiments with Statoil queries using
other available OBDA query processing engines and com-
pare results with the outcome of experiments reported in
this paper.
An important lesson we learned in Statoil was about the

role of reasoning which is used by the Optique platform for
query enrichment (during query processing). In particu-
lar, we did not encounter in Statoil the cases that require
reasoning w.r.t existentially quantified individuals. In fact,
the most useful features from Statoil ontology are class and
property hierarchies, and domain and range axioms. These
features correspond the core of RDFS. Non-recursive rules
are in principle also useful [66], but a proper evaluation of
this for Statoil is our future work.
For future work we also plan to extend and integrate

our OBDA deployment in the business processes of Statoil
engineers and IT personnel. Moreover, we are working
on a better integration of the deployment with existing
Statoil analytical and data visualisation tools, and have
already integrated our solution with a geospatial data vi-
sualisation tool. An important request that we got while
evaluating the OBDA deployment with Statoil engineers is
to allow for users’ interaction with the system: engineers
would like to send their feedback to the OBDA system,
e.g., by saying that some ontological terms are missing,
or that some answers are wrong, and to get explanations
from the system, e.g., to get provenance to query answers
that include the name of the database where the answers
came from as well as the exact tables that were used in
the mappings. Enabling such user interaction is also an
area of future work. Another important future work is to
enable a form of a progress bar that shows an estimation
of how much time is still needed to finish query execution.
We also work on developing access control mechanisms
for our OBDA deployment that can ensure that users can
access only the data they are allowed to see [67, 68]. Fi-
nally, OBDA systems lack mechanisms that natively ad-
dress various data quality problems, e.g., data cleaning,
entity resolution, etc, which are important in data inte-
gration scenarios. This clearly poses practical challenges
to adaptation of OBDA solutions in the industrial environ-
ment. We have only partially addressed this by developing
an entity resolution mechanism that relies on cross-linked
tables that explicitly enumerate URIs that refer to the
same entity [69]. These techniques were developed during
the course of our project with Statoil as a response to a
request from Statoil and they were implemented in the Op-
tique platform. At the same time major research advances
are needed to develop a robust data quality framework for

OBDA.

11. Related Work and Conclusion

11.1. Related Work

We now present related work on OBDA systems in gen-
eral, and then on the four Optique components emphasised
in the paper.

OBDA Systems. There are several academic and indus-
trial systems for OBDA or that are very similar to OBDA
in spirit. E.g., Mastro [2], morph-RDB [3], similarly to Op-
tique, support ontology reasoning, while D2RQ [70], On-
toQF [5], Virtuoso [71], Spyder [72], and Ultrawrap [6] do
not support reasoning. OntoQF, Mastro, and morph-RDB
do not offer ontology/mapping bootstrapping. Moreover,
Mastro, morph-RDB, and OntoQF lack ontology layering
and importing. Ultrawrap does not support ontology im-
porting, but it is extendable with QODI system [73] for
query-driven ontology alignment. Moreover, Ultrawrap,
Mastro, and morph-RDB lack user-oriented query formu-
lation interfaces; they provide SPARQL end-points and
predefined queries. OntoQF considers ontology queries as
OWL statements and has no visual query formulation sup-
port. Virtuoso, Spyder, and D2RQ have direct mapping
bootstrappers and simple user interfaces for navigating the
data graph. However, no advanced mapping management
is supported.

Bootstrapping Ontology and Mappings. There are many
approaches for bootstrapping ontologies and mappings
from relational schemata; see [33, 34] for an overview.
However, most of the state of the art bootstrappers fail
to conform with the ontology and mapping language stan-
dards, or they do not provide profiling capabilities for the
output ontology. Moreover, BootOX, according to the
latest results presented within the RODI benchmark eval-
uation [61], outperforms most of the existing (automatic)
bootstrapping systems.
For historical reasons (i.e., OWL was not yet defined),

former bootstrapping systems used RDFS and F-Logic ax-
ioms (e.g., [74, 75]). Other systems have also used DLR-
Lite based languages (e.g., [76]) and extensions based on
SWRL (e.g., [77, 78]). Regarding mapping generation, be-
fore R2RML became a W3C recommendation, system typ-
ically relied on their own native language to define map-
pings (e.g., D2RQ [70], Mastro [79]). To the best of our
knowledge, currently only IncMap [57], MIRROR [59], On-
top [80], Ultrawrap [81, 6], and AutoMap4OBDA [82] pro-
duce mappings in the R2RML language. Among the sys-
tems using OWL or OWL 2 as the ontology language, only
BootOX put special attention to the target ontology ex-
pressiveness. BootOX allows to output different ontology
axioms to conform to the required OWL 2 profile. Many
bootstrapping systems typically use exact or min cardinal-
ity restrictions which fall outside the three OWL 2 profiles

33

(e.g., [83, 84]). Furthermore, other systems, like [85], pro-
duce an ontology that falls into OWL 2 Full due to the use
of the InverseFunctional characteristic in both data and
obtect properties. Finally, MIRROR, Ontop, Ultrawrap
and AutoMap4OBDA are conformant to the OWL 2 QL,
but they do not support profiling to the other sublanguages
of OWL 2. As BootOX, systems like Automapper [77],
Relational.OWL [86] and ROSEX [87] complement the au-
tomatically generated ontology with links to domain on-
tologies. However, none of these systems apply logic-based
techniques to assess the consequences of such links to do-
main ontologies. Special mention require the approaches
in [88, 89]. These approaches use (semi-automatic) ontol-
ogy learning techniques to exploit the data and discover
interesting patterns that can be included to enrich the on-
tology.

Query Rewriting and Optimisation. The first query
rewriting algorithm is PerfectRef [90]. This algorithm,
implemented in QuOnto, often returned hundreds of thou-
sands of CQs (even for simple ontologies and mappings).
To deal with the issue, PerfectRef was later extended by a
Semantic Query Optimization (SQO) component, which
removes redundant CQs and eliminates redundant self-
joins using database integrity constraints (foreign and pri-
mary keys) [91]. To further improve the performance,
the technique of T-mappings was introduced in [92] and
adopted in Ontop [40]. The tree-witness query rewriting
algorithm [93] replaced PerfectRef to drastically reduce
the size of rewritings and further take advantage of T-
mappings.

Federated Query Processing. Federated query processing
presents several challenges that have been studied in the
database literature. Long and unpredictable data trans-
fer times, unavailability of resources, difficulty to obtain
statistics and cost estimations are some of the main dif-
ficulties. Examples of solutions proposed include caching
of temporary results [94] and adaptive query processing
that involves interleaved planning and execution [95]. Re-
garding query planning, the main idea is to extend an
existing method, in order to incorporate decisions as to
when it is better to push processing to external sources.
The Garlic system [96] uses grammar-like rules, extend-
ing the method of [97], whereas [98] is based on the
Volcano transformation-based optimizer [99]. Recent ap-
proaches [100, 101, 102] rely on specialized engines that
act as endpoints and the mediator can be thought of as a
polystore or multistore that takes advantage of these en-
gines in order to achieve efficient processing depending on
the specific kind of underlying data. For example, an end-
point can be a relational database optimized for OLTP
tasks, a column store optimized for analytic workloads, a
document store etc.

Visual Query Formulation Interfaces over Ontologies.
There are many ontology based systems that use vi-

sual representations for query formulation, e.g., On-
toVQL [103], GRQL [104], TAMBIS [105]; see [106, 63] for
detailed related work. To the best of our knowledge, none
of the systems that we know about can be used off-the-
shelf for query formulation scenarios in Statoil due to spe-
cific technical or usability requirements of our industrial
use-case [44]. In particular, most of the systems we saw
are better suited for exploration of ontologies rather than
underlying data, e.g., in contrast to OptiqueVQS they do
not offer sufficient treatment of data properties and data
values. From the usability perspective, we did not find
a system offering a sufficient balance of the view on se-
mantic details of specific query fragments and the query
overview [63]. We note that our evaluation of OptiqueVQS
in Statoil was a feasibility study. That is, our goal was to
show that OBDA allowed Statoil’s domain experts (with-
out special knowledge of formal query languages and ex-
perience in query formulation) to construct (most of) their
typical queries which they were not able to construct be-
fore (see Requirements 6-8 for further details). Thus, our
goal in this paper was to show the benefits of OBDA for do-
main experts rather than to evaluate OptiqueVQS against
other tools and methods.

11.2. Conclusion

In this paper we presented a description of a data anal-
yses routine at Statoil and challenges with access to busi-
ness critical data required for these analyses. These chal-
lenges delay the analytical tasks significantly, thus address-
ing them is of a high importance for Statoil. Additionally,
the challenges are representative for large data intensive
industries and a good solution would be beneficial not only
for Statoil, but for a wide range of enterprises. We believe
that OBDA technology is a promising way to address the
challenges while to the best of our knowledge existing off-
the-shelf OBDA solutions can not be directly applied to
do the job. Thus, we developed an OBDA solution that
is capable of dealing with the challenges and is equipped
with a deployment module BootOX for semi-automatic
creation of ontologies and mappings, a query processing
module Ontop that ensures efficient OBDA query process-
ing, a federated query execution module Exareme that
provides highly optimised query plans, and a query for-
mulation module OptiqueVQS that allows end-users to
construct relatively complex queries over ontologies with-
out a prior knowledge of Semantic Technologies. We de-
ployed our solution at Statoil and evaluated it against the
requirements we derived from interviews of Statoil engi-
neers, analyses of their business processes, and in partic-
ular on a catalogue of typical information needs of Statoil
geologists. Although our evaluation was conducted in a
control environment and Optique has not been used by
Statoil engineers in production, the evaluation results are
promising and indicate a great potential of using OBDA in
Statoil. We believe that our work opens new avenues for
research in the areas of semantic access and semantic inte-
gration of federated and distributed relational databases in

34

large enterprises, since it shows practical benefits of such
approach and exhibits important practical challenges that
should be addressed in order to ensure success of such tech-
nology.

Acknowledgements. This work was partially funded by
the EU project Optique (FP7-ICT-318338), the EPSRC
projects MaSI3, DBOnto, ED3, the BIGMED project
(IKT 259055), and the SIRIUS Centre for Scalable Data
Access (Research Council of Norway, project no.: 237889).

References

[1] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini, R. Rosati, Linking data to ontologies, J. on Data Seman-
tics 10 (2008) 133–173.

[2] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, D. F.
Savo, The MASTRO system for ontology-based data access,
Semantic Web J. 2 (1) (2011) 43–53.

[3] F. Priyatna, Ó. Corcho, J. Sequeda, Formalisation and expe-
riences of R2RML-based SPARQL to SQL query translation
using morph, in: Proc. of WWW, 2014, pp. 479–490.

[4] C. Bizer, A. Seaborne, D2RQ - treating non-RDF databases
as virtual RDF graphs, in: Proc. of ISWC Posters & Demos
Track, 2004.

[5] K. Munir, M. Odeh, R. McClatchey, Ontology-driven rela-
tional query formulation using the semantic and assertional
capabilities of OWL-DL, Knowl.-Based Syst. 35 (2012) 144–
159.

[6] J. F. Sequeda, D. P. Miranker, Ultrawrap: SPARQL execution
on relational data, J. of Web Semantics 22 (0) (2013) 19 – 39.

[7] M. Rodriguez-Muro, D. Calvanese, High performance query
answering over DL-Lite ontologies, in: Proc. of KR, 2012, pp.
308–318.

[8] M. Giese, D. Calvanese, P. Haase, I. Horrocks, Y. Ioannidis,
H. Kllapi, M. Koubarakis, M. Lenzerini, R. Möller, O. Özçep,
M. Rodriguez Muro, R. Rosati, R. Schlatte, M. Schmidt,
A. Soylu, A. Waaler, Scalable end-user access to big data, in:
Big Data Computing, Chapman and Hall/CRC, 2013.

[9] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase,
E. Jimenez-Ruiz, D. Lanti, M. Rezk, G. Xiao, O. Ozcep,
R. Rosati, Optique—zooming in on big data access, Computer
48 (3) (2015) 60–67. doi:10.1109/MC.2015.82.

[10] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie,
C. Pinkel, M. Rezk, M. G. Skjæveland, E. Thorstensen,
G. Xiao, D. Zheleznyakov, I. Horrocks, Ontology based access
to exploration data at statoil, in: ISWC, 2015, pp. 93–112.

[11] H. Kllapi, E. Sitaridi, M. M. Tsangaris, Y. Ioannidis, Schedule
optimization for data processing flows on the cloud, in: Proc.
of ACM SIGMOD, ACM, 2011, pp. 289–300.

[12] D. Hovland, D. Lanti, M. Rezk, G. Xiao, OBDA constraints
for effective query answering, in: Proc. of RuleML, Vol. 9718,
Springer, 2016, pp. 269–286.

[13] A. Soylu, M. Giese, E. Jimenez-Ruiz, G. Vega-Gorgojo, I. Hor-
rocks, Experiencing OptiqueVQS – a multi-paradigm and
ontology-based visual query system for end-users, Universal
Access in the Information Society 15 (1) (2016) 129–152.

[14] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks,
C. Pinkel, M. G. S. veland, E. Thorstensen, J. Mora, BootOX:
Practical mapping of RDBs to OWL 2, in: Proc. of ISWC,
2015, pp. 113–132.

[15] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, W. May, D. Ritze,
M. G. Skjæveland, A. Solimando, E. Kharlamov, RODI: A
benchmark for automatic mapping generation in relational-to-
ontology data integration, in: Proc. of ESWC, 2015, pp. 21–37.

[16] J. Crompton, Keynote talk at the W3C workshop on sem. web
in oil & gas industry (2008).

[17] M. G. Skjæveland, E. H. Lian, I. Horrocks, Publishing the
norwegian petroleum directorate’s factpages as semantic web
data, in: Proc. of ISWC, 2013, pp. 162–177.

[18] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From
SHIQ and RDF to OWL: The making of a web ontology lan-
guage, J. of Web Semantics 1 (1) (2003) 7–26.

[19] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F.
Patel-Schneider (Eds.), The Description Logic Handbook:
Theory, Implementation, and Applications, Cambridge Uni-
versity Press, 2003.

[20] A. S. Sidhu, T. S. Dillon, E. Chang, B. S. Sidhu, Protein on-
tology development using OWL, in: Proc. of OWLED, 2005.

[21] C. Golbreich, S. Zhang, O. Bodenreider, The foundational
model of anatomy in OWL: Experience and perspectives, J.
of Web Semantics 4 (3) (2006) 181–195.

[22] J. Goodwin, Experiences of using OWL at the ordnance survey,
in: Proc. of OWLED, 2005.

[23] California Inst. of Technology, Semantic web for earth
and environmental terminology, http://sweet.jpl.nasa.gov/
(2006).

[24] S. Derriere, A. Richard, A. Preite-Martinez, An ontology of as-
tronomical object types for the virtual observatory, in: Special
Session 3 of the 26th meeting of the IAU: Virtual Observatory
in Action: New Science, New Technology, and Next Genera-
tion Facilities, 2006.

[25] D. Soergel, B. Lauser, A. C. Liang, F. Fisseha, J. Keizer,
S. Katz, Reengineering thesauri for new applications: The
AGROVOC example, J. Digit. Inf. 4 (4) (2004) 1–23.

[26] L. Lacy, G. Aviles, K. Fraser, W. Gerber, A. M. Mulvehill,
R. Gaskill, Experiences using OWL in military applications,
in: Proc. of OWLED, 2005.

[27] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
R. Rosati, Tractable reasoning and efficient query answering
in description logics: The DL-Lite family, JAR 39 (3) (2007)
385–429.

[28] S. Harris, A. Seaborne, E. Prud’hommeaux, SPARQL 1.1
Query Language, Tech. rep., W3C, http://www.w3.org/TR/

sparql11-query (2013).
[29] P. Haase, C. Hütter, M. Schmidt, A. Schwarte, The informa-

tion workbench as a self-service platform for linked data ap-
plications, in: Proc. of WWW, 2012.

[30] E. Kharlamov, N. Solomakhina, Ö. L. Özçep, D. Zheleznyakov,
T. Hubauer, S. Lamparter, M. Roshchin, A. Soylu, S. Watson,
How semantic technologies can enhance data access at siemens
energy, in: Proc. of ISWC, 2014, pp. 601–619.

[31] L. Feigenbaum, G. T. Williams, SPARQL 1.1 proto-
col, W3C recommendation, W3C, https://www.w3.org/TR/

sparql11-protocol/ (2013).
[32] C. Pinkel, C. Binnig, P. Haase, C. Martin, K. Sengupta,

J. Trame, How to best find a partner? an evaluation of edit-
ing approaches to construct R2RML mappings, in: Proc. of
ESWC, 2014, pp. 675–690.

[33] J. Sequeda, S. H. Tirmizi, Ó. Corcho, D. P. Miranker, Sur-
vey of directly mapping SQL databases to the semantic web,
Knowledge Eng. Review 26 (4) (2011) 445–486.

[34] D.-E. Spanos, P. Stavrou, N. Mitrou, Bringing relational
databases into the semantic web: A survey, Semantic Web
J. 3 (2) (2012) 169–209.

[35] P. Shvaiko, J. Euzenat, Ontology matching: State of the art
and future challenges, IEEE Trans. Knowl. Data Eng. 25 (1)
(2013) 158–176.

[36] E. Jimenez-Ruiz, B. Cuenca Grau, Y. Zhou, I. Horrocks,
Large-scale interactive ontology matching: Algorithms and im-
plementation, in: Proc. of ECAI, 2012, pp. 444–449.

[37] A. Solimando, E. Jiménez-Ruiz, G. Guerrini, Detecting and
correcting conservativity principle violations in ontology-to-
ontology mappings, in: Proc. of ISWC, Vol. 8797, 2014, pp.
1–16.

[38] A. Solimando, E. Jimenez-Ruiz, G. Guerrini, Minimizing con-
servativity violations in ontology alignments: Algorithms and
evaluation, Knowledge and Information Systems (2016) (in

35

press).
[39] D. Lanti, M. Rezk, G. Xiao, D. Calvanese, The NPD bench-

mark: Reality check for OBDA systems, in: Proc. of EDBT,
2015, pp. 617–628.

[40] R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, M. Za-
kharyaschev, Answering SPARQL queries over databases un-
der OWL 2 QL entailment regime, in: ISWC, Vol. 8796,
Springer, 2014, pp. 552–567.

[41] P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe, Efficient and
extensible algorithms for multi query optimization, in: Proc.
of ACM SIGMOD, ACM, 2000, pp. 249–260.

[42] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov,
D. Zheleznyakov, I. Horrocks, OptiqueVQS: towards an
ontology-based visual query system for big data, in: MEDES,
2013, pp. 119–126.

[43] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez-Ruiz,
M. Giese, I. Horrocks, Ontology-based visual query formu-
lation: An industry experience, in: Proceedings of the 11th
International Symposium on Visual Computing (ISVC 2015),
Vol. 9474 of LNCS, Springer, 2015, pp. 842–854.

[44] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez Ruiz,
M. Giese, M. G. Skjæveland, D. Hovland, R. Schlatte,
S. Brandt, H. Lie, I. Horrocks, OptiqueVQS: a visual query
system over ontologies for industry, Semantic Web J. (under
review).

[45] A. H. M. Ter Hofstede, H. A. Proper, T. P. Van Der Weide,
Query formulation as an information retrieval problem, Com-
puter Journal 39 (4) (1996) 255–274.

[46] A. Soylu, F. Modritscher, P. De Causmaecker, Ubiquitous
web navigation through harvesting embedded semantic data:
A mobile scenario, Integrated Computer-Aided Engineering
19 (1) (2012) 93–109.

[47] T. Catarci, M. F. Costabile, S. Levialdi, C. Batini, Vi-
sual query systems for databases: A survey, J. of Vi-
sual Languages and Computing 8 (2) (1997) 215–260.
doi:10.1006/jvlc.1997.0037.

[48] A. Soylu, F. Moedritscher, F. Wild, P. De Causmaecker,
P. Desmet, Mashups by orchestration and widget-based per-
sonal environments: Key challenges, solution strategies, and
an application, Program: Electronic Library and Information
Systems 46 (4) (2012) 383–428.

[49] A. Soylu, M. Giese, Qualifying ontology-based visual query
formulation, in: Proceedings of the 11th International Confer-
ence Flexible Query Answering Systems (FQAS 2015), Vol. 400
of Advances in Intelligent Systems and Computing, Springer,
2015, pp. 243–255.

[50] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š. Marciuška,
D. Zheleznyakov, Faceted search over RDF-based knowledge
graphs, J. of Web Semantics 37-38 (2016) 55–74.

[51] M. Arenas, B. Cuenca Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, Faceted search over ontology-enhanced RDF
data, in: CIKM, 2014, pp. 939–948.

[52] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, Hermit:
An OWL 2 reasoner, JAR 53 (3) (2014) 245–269.

[53] A. Soylu, M. Giese, R. Schlatte, E. Jimenez-Ruiz, E. Khar-
lamov, O. Ozcep, C. Neuenstadt, S. Brandt, Querying Indus-
trial Stream-Temporal Data: an Ontology-based Visual Ap-
proach, Journal of Ambient Intelligence and Smart Environ-
ments 9 (1) (2017) 77–95.

[54] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov,
D. Zheleznyakov, I. Horrocks, Towards exploiting query his-
tory for adaptive ontology-based visual query formulation, in:
MTSR, 2014, pp. 107–119.

[55] M. Console, V. Santarelli, D. Savo, Efficient approximation in
DL-Lite of OWL 2 ontologies, in: DL, Vol. 1014 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/, 2013,
pp. 132–143.

[56] G. Stoilos, G. B. Stamou, S. D. Kollias, A string metric for
ontology alignment, in: Proc. of ISWC, 2005, pp. 624–637.

[57] C. Pinkel, C. Binnig, E. Kharlamov, P. Haase, IncMap: Pay
as you go matching of relational schemata to owl ontologies,

in: OM, 2013.
[58] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov,

D. Lanti, M. Rezk, M. Rodriguez-Muro, G. Xiao, Ontop: An-
swering SPARQL queries over relational databases, Semantic
Web 8 (3) (2017) 471–487.

[59] L. F. de Medeiros, F. Priyatna, O. Corcho, MIRROR: Auto-
matic R2RML mapping generation from relational databases,
in: ICWE, 2015, pp. 326–343.

[60] M. G. Skjæveland, E. Lian, I. Horrocks, Publishing the NPD
factpages as semantic web data, in: Proc. of ISWC, 2013, pp.
162–177.

[61] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, W. May,
A. Nikolov, M. G. Skjæveland, A. Solimando, M. Taheriyan,
C. Heupel, I. Horrocks, RODI: Benchmarking relational-to-
ontology mapping generation quality, Semantic Web J. (2016)
(accepted for publication).

[62] D. A. et al., Schema and ontology matching with COMA++,
in: Proc. of ACM SIGMOD, 2005, pp. 906–908.

[63] A. Soylu, M. Giese, E. Kharlamov, E. Jimenez-Ruiz,
D. Zheleznyakov, I. Horrocks, Ontology-based end-user visual
query formulation: Why, what, who, how, and which?, Uni-
versal Access in the Information Society (2016) (in press).

[64] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, E. Gi-
annopoulou, Ontology visualization methods - a survey, ACM
Computing Surveys 39 (4) (2007) 10:1–10:43.

[65] J. Jones, W. Kuhn, C. Keßler, S. Scheider, Making the web
of data available via web feature services, in: Connecting a
Digital Europe Through Location and Place - International
AGILE’2014 Conference, Castellon, Spain, 13-16 June, 2014,
2014, pp. 341–361.

[66] G. Xiao, M. Rezk, M. Rodriguez-Muro, D. Calvanese,
Rules and ontology based data access, in: M.-L. Mugnier,
R. Kontchakov (Eds.), Proc. 8th International Conference on
Web Reasoning and Rule Systems (RR 2014), LNCS, Springer,
2014.

[67] B. Cuenca Grau, E. Kharlamov, E. V. Kostylev,
D. Zheleznyakov, Controlled query evaluation for data-
log and OWL 2 profile ontologies, in: Proc. of IJCAI, 2015,
pp. 2883–2889.

[68] B. Cuenca Grau, E. Kharlamov, E. V. Kostylev,
D. Zheleznyakov, Controlled query evaluation over OWL 2 RL
ontologies, in: Proc. of ISWC, 2013, pp. 49–65.

[69] D. Calvanese, M. Giese, D. Hovland, M. Rezk, Ontology-based
integration of cross-linked datasets, in: ISWC, 2015, pp. 199–
216.

[70] C. Bizer, A. Seaborne, D2RQ—treating non-RDF databases
as virtual RDF graphs, in: Proc. of ISWC, 2004.

[71] virtuoso.
URL http://virtuoso.openlinksw.com/

[72] Spyder.
URL http://www.revelytix.com/content/spyder

[73] A. Tian, J. Sequeda, D. P. Miranker, QODI: Query as context
in automatic data integration, in: Proc. of ISWC, 2013, pp.
624–639.

[74] L. Stojanovic, N. Stojanovic, R. Volz, Migrating Data-
Intensive Web Sites into the Semantic Web, in: SAC, 2002,
pp. 1100–1107.

[75] I. Astrova, Reverse Engineering of Relational Databases to On-
tologies, in: ESWS, 2004, pp. 327–341.

[76] L. Lubyte, S. Tessaris, Automatic extraction of ontologies
wrapping relational data sources, in: DEXA, 2009, pp. 128–
142.

[77] M. Fisher, M. Dean, G. Joiner, Use of OWL and SWRL for
Semantic Relational Database Translation, in: OWLED, 2008.

[78] D. V. Levshin, Mapping Relational Databases to the Semantic
Web with Original Meaning, Int. J. Software and Informatics
4 (1) (2010) 23–37.

[79] C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenz-
erini, L. Lepore, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi,
V. Santarelli, D. F. Savo, MASTRO STUDIO: Managing
Ontology-Based Data Access Applications, PVLDB 6 (12)

36

(2013) 1314–1317.
[80] Ontop.

URL http://ontop.inf.unibz.it/

[81] J. Sequeda, M. Arenas, D. P. Miranker, On directly mapping
relational databases to RDF and OWL, in: Proc. of WWW,
2012, pp. 649–658.

[82] Á. Sicilia, G. Nemirovski, AutoMap4OBDA: Automated gen-
eration of R2RML mappings for OBDA, in: Proc. of EKAW,
2016, pp. 577–592.

[83] N. Alalwan, H. Zedan, F. Siewe, Generating OWL Ontology
for Database Integration, in: SEMAPRO, 2009, pp. 22–31.
doi:10.1109/SEMAPRO.2009.21.

[84] S. H. Tirmizi, J. Sequeda, D. P. Miranker, Translating SQL
Applications to the Semantic Web, in: DEXA, 2008, pp. 450–
464.

[85] I. Astrova, Rules for Mapping SQL Relational Databases to
OWL Ontologies, in: MTSR, 2007, pp. 415–424.

[86] C. P. de Laborda, S. Conrad, Database to Semantic Web Map-
ping Using RDF Query Languages, in: ER, 2006, pp. 241–254.

[87] C. Curino, G. Orsi, E. Panigati, L. Tanca, Accessing and Doc-
umenting Relational Databases through OWL Ontologies, in:
FQAS, 2009, pp. 431–442.

[88] F. Cerbah, N. Lammari, Perspectives in Ontology Learning,
AKA / IOS Press. Serie, 2012, Ch. Ontology Learning from
Databases: Some Efficient Methods to Discover Semantic Pat-
terns in Data, pp. 1–30.

[89] M. G. Skjæveland, M. Giese, D. Hovland, E. H. Lian,
A. Waaler, Engineering Ontology-Based Access to Real-World
Data Sources, J. Web Semantics.

[90] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
R. Rosati, Tractable reasoning and efficient query answering in
description logics: The DL-Lite family, J. of Automated Rea-
soning 39 (3) (2007) 385–429, doi:10.1007/s10817-007-9078-x.

[91] M. Rodriguez-Muro, Tools and techniques for ontology based
data access in lightweight description logics, Ph.D. thesis,
KRDB Research Centre for Knowledge and Data, Free Uni-
versity of Bozen-Bolzano (2010).

[92] M. Rodŕıguez-Muro, D. Calvanese, Dependencies: Making on-
tology based data access work in practice, in: AMW, Vol. 749,
2011.

[93] S. Kikot, R. Kontchakov, M. Zakharyaschev, Conjunctive
query answering with OWL 2 QL, in: KR, 2012, pp. 275–285.

[94] S. Adali, K. S. Candan, Y. Papakonstantinou, V. Subrahma-
nian, Query caching and optimization in distributed mediator
systems, in: SIGMOD Record, ACM, 1996, pp. 137–146.

[95] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, D. S. Weld,
An adaptive query execution system for data integration, in:
SIGMOD Record, ACM, 1999, pp. 299–310.

[96] L. M. Haas, D. Kossmann, E. L. Wimmers, J. Yang, Optimiz-
ing queries across diverse data sources, in: Proc. of VLDB,
1997, pp. 276–285.

[97] G. M. Lohman, Grammar-like functional rules for represent-
ing query optimization alternatives, SIGMOD Record 17 (3)
(1988) 18–27.

[98] J. L. Ambite, C. A. Knoblock, Flexible and scalable cost-based
query planning in mediators: A transformational approach,
Artificial Intelligence 118 (1) (2000) 115–161.

[99] G. Graefe, W. J. McKenna, The volcano optimizer generator:
Extensibility and efficient search, in: Data Engineering, 1993.
Proceedings. Ninth International Conference on, IEEE, 1993,
pp. 209–218.

[100] F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, I. Manolescu,
Invisible glue: scalable self-tuning multi-stores, in: Conference
on Innovative Data Systems Research (CIDR), 2015.

[101] D. J. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-
Saborit, A. Avanes, M. Flasza, J. Gramling, Split query pro-
cessing in polybase, in: Proc. of ACM SIGMOD, ACM, 2013,
pp. 1255–1266.

[102] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska,
B. Howe, J. Kepner, S. Madden, D. Maier, T. Mattson,
S. Zdonik, The bigdawg polystore system, SIGMOD Record

44 (2) (2015) 11–16.
[103] A. Fadhil, V. Haarslev, OntoVQL: A graphical query language

for OWL ontologies, in: DL, 2007.
[104] N. Athanasis, V. Christophides, D. Kotzinos, Generating on

the fly queries for the semantic web: The ICS-FORTH graphi-
cal RQL interface (GRQL), in: Proc. of ISWC, 2004, pp. 486–
501.

[105] P. G. Baker, A. Brass, S. Bechhofer, C. A. Goble, N. W. Paton,
R. Stevens, TAMBIS: Transparent access to multiple bioinfor-
matics information sources, in: ISMB, 1998, pp. 25–34.

[106] O. Noppens, Ontology visualization and analysis (2013).
[107] M. Horridge, N. Drummond, J. Goodwin, A. L. Rector,

R. Stevens, H. Wang, The Manchester OWL Syntax, in:
OWLED, 2006.

37

Appendix A. Example End-to-End Statoil Data
Access Task

To show the Optique solution from end to end, we start
with the following information need:

Give me formation pressure measurements to-
gether with the zone they were taken in, and any
log curves also covering that zone.

The query as expressed in the VQS is shown in Fig. A.23
and in SPARQL syntax is:

SELECT ?w ?wellbore ?wi ?fp ?fp_depth

?formation_pressure ?unit ?logged ?curve

WHERE {

?w a :Wellbore;

:name ?wellbore.

:hasWellboreInterval ?wi;

:hasFormationPressure ?fp.

?fp :hasDepthMeasurement ?fp_depth;

:valueInStandardUnit ?formation_pressure.

?fp_depth :inWellboreInterval ?wi.

?wi :hasUnit ?unit;

:overlapsWellboreInterval ?logged.

?logged :hasLogCurve ?curve.

}

The resulting SQL generated by Ontop and sent to
Exareme is in Table A.8, and the execution plan used
by Exareme to execute the query is in Fig. A.24. The
SQL query consists of two union subqueries. The num-
bers inside the brackets in the resulting plan denote the
subquery or subqueries that make use of each node. For
example, the part of the plan whose nodes are marked by
[1, 2] denote the common subexpression of these two sub-
queries. Different colors for each base table node denote
the database from which it comes from: yellow for EPDS,
green for Recall and red for OpenWorks. Some of the map-
pings used in the unfolding from datalog to SQL are shown
in Table A.9.

Figure A.23: The end-to-end example query expressed in the Op-
tiqueVQS.

38

Table A.8: SQL Generated in the end-to-end example

SELECT
’slegge:Wellbore -’ || QVIEW2 ." WELLBORE_ID" AS "wellbore",
’slegge:StratigraphicZone -’ || QVIEW2 ." WELLBORE_ID" || ’-’ || QVIEW3 ." STRAT_COLUMN_IDENTIFIER" || ’-’ ||
QVIEW3 ." STRAT_INTERP_VERSION" || ’-’ || QVIEW3 ." STRAT_ZONE_IDENTIFIER" AS "wi",
QVIEW5 ." P_PRESSURE_S" AS "fp",
QVIEW5 ." DATA_VALUE" AS "formation_pressure",
’slegge:PressureMeasuredDepth -’ || QVIEW5 ." P_PRESSURE_S" AS "fp_depth",
’slegge:StratigraphicUnit -’ || QVIEW3 ." STRAT_COLUMN_IDENTIFIER" || ’-’ || QVIEW3 ." STRAT_UNIT_IDENTIFIER" AS "unit",
’recall:LoggedInterval/recall/’ || QVIEW9 ." MIRROR_ID" AS "logged",
’recall:LogCurve/recall/’ || QVIEW9 ." MIRROR_ID" AS "curve"

FROM
"adp "." SLEGGE1_WELL" QVIEW1 , "adp "." SLEGGE1_WELLBORE" QVIEW2 ,
"adp "." SLEGGE_STRATIGRAPHIC_ZONE" QVIEW3 , "adp"." SLEGGE1_ACTIVITY" QVIEW4 ,
"adp "." SLEGGE1_P_PRESSURE" QVIEW5 , "adp "." SLEGGE1_ACTIVITY_CLASS" QVIEW6 ,
"adp "." SLEGGE1_P_LOCATION_1D" QVIEW7 , "adp "." SLEGGE_PICKED_STRATIGRAPHIC_ZONES" QVIEW8 ,
"adp "." RECALL_LOG_VW" QVIEW9 , "adp "." wellbore_sameas_recall_slegge" QVIEW10
WHERE
(QVIEW2 ." R_EXISTENCE_KD_NM" = ’actual ’) AND (QVIEW1 ." WELL_S" = QVIEW2 ." WELL_S ") AND
(QVIEW2 ." SECURITY_LABELS_S" = 0) AND QVIEW2 ." WELLBORE_ID" IS NOT NULL AND
(QVIEW2 ." WELLBORE_ID" = QVIEW3 ." WELLBORE ") AND QVIEW3 ." STRAT_INTERP_VERSION" IS NOT NULL AND
QVIEW3 ." STRAT_ZONE_IDENTIFIER" IS NOT NULL AND QVIEW3 ." STRAT_COLUMN_IDENTIFIER" IS NOT NULL AND
(QVIEW2 ." WELLBORE_S" = QVIEW4 ." FACILITY_S ") AND (QVIEW5 ." DATA_VALUE_U" = ’bar ’) AND
(QVIEW4 ." ACTIVITY_S" = QVIEW5 ." ACTIVITY_S ") AND (QVIEW4 ." KIND_S" = QVIEW6 ." ACTIVITY_CLASS_S ") AND
(QVIEW6 ." CLSN_CLS_NAME" = ’formation pressure depth data ’) AND
QVIEW5 ." P_PRESSURE_S" IS NOT NULL AND
(QVIEW5 ." DATA_VALUE" > 0) AND QVIEW5 ." DATA_VALUE" IS NOT NULL AND
(QVIEW4 ." ACTIVITY_S" = QVIEW7 ." ACTIVITY_S ") AND (QVIEW2 ." WELLBORE_ID" = QVIEW8 ." WELLBORE ") AND
(QVIEW3 ." STRAT_COLUMN_IDENTIFIER" = QVIEW8 ." STRAT_COLUMN_IDENTIFIER ") AND
(QVIEW3 ." STRAT_INTERP_VERSION" = QVIEW8 ." STRAT_INTERP_VERSION ") AND
(QVIEW3 ." STRAT_ZONE_IDENTIFIER" = QVIEW8 ." STRAT_ZONE_IDENTIFIER ") AND
(QVIEW7 ." DATA_VALUE_1_OU" = QVIEW8 ." STRAT_ZONE_DEPTH_UOM ") AND
((QVIEW3 ." STRAT_ZONE_IDENTIFIER" IS NOT NULL
AND (QVIEW8 ." STRAT_ZONE_ENTRY_MD" <= QVIEW7 ." DATA_VALUE_1_O "))
AND (QVIEW8 ." STRAT_ZONE_EXIT_MD" >= QVIEW7 ." DATA_VALUE_1_O ")) AND
QVIEW3 ." STRAT_UNIT_IDENTIFIER" IS NOT NULL AND
(QVIEW9 ." WELL_NAME" = QVIEW10 ." recall_id ") AND
(QVIEW2 ." WELLBORE_S" = QVIEW10 ." slegge_id ") AND
((QVIEW9 ." TOP_DEPTH" <= QVIEW3 ." STRAT_ZONE_EXIT_MD ") AND (QVIEW9 ." BOTTOM_DEPTH" >= QVIEW3 ." STRAT_ZONE_ENTRY_MD ")) AND
QVIEW9 ." MIRROR_ID" IS NOT NULL
UNION ALL
SELECT

’slegge:Wellbore -’ || QVIEW2 ." WELLBORE_ID ") AS "w",
QVIEW2 ." WELLBORE_ID" AS "wellbore",
’slegge:StratigraphicZone -’ || QVIEW2 ." WELLBORE_ID" || ’-’ || QVIEW3 ." STRAT_COLUMN_IDENTIFIER" || ’-’ ||
QVIEW3 ." STRAT_INTERP_VERSION" || ’-’ || QVIEW3 ." STRAT_ZONE_IDENTIFIER" AS "wi",
’slegge:FormationPressure -’ || QVIEW5 ." P_PRESSURE_S" AS "fp",
QVIEW5 ." DATA_VALUE" AS "formation_pressure",
’slegge:PressureMeasuredDepth -’ || QVIEW5 ." P_PRESSURE_S" AS "fp_depth",
’slegge:StratigraphicUnit -’ || QVIEW3 ." STRAT_COLUMN_IDENTIFIER" || ’-’ || QVIEW3 ." STRAT_UNIT_IDENTIFIER" AS "unit",
’openworks:LoggedInterval_openworksSV4NSEA_ ’ || QVIEW9 ." LOG_CURVE_ID" AS "logged",
’openworks:LogCurve_openworksSV4NSEA_ ’ || QVIEW9 ." LOG_CURVE_ID" AS "curve"

FROM
"adp "." SLEGGE1_WELL" QVIEW1 , "adp "." SLEGGE1_WELLBORE" QVIEW2 ,
"adp "." SLEGGE_STRATIGRAPHIC_ZONE" QVIEW3 , "adp"." SLEGGE1_ACTIVITY" QVIEW4 ,
"adp "." SLEGGE1_P_PRESSURE" QVIEW5 , "adp "." SLEGGE1_ACTIVITY_CLASS" QVIEW6 ,
"adp "." SLEGGE1_P_LOCATION_1D" QVIEW7 , "adp "." SLEGGE_PICKED_STRATIGRAPHIC_ZONES" QVIEW8 ,
"adp "." OPENWORKS_SV4NSEA_LOG_CURVE_HEADER" QVIEW9 , "adp"." OPENWORKS_SV4NSEA_WELL_MASTER" QVIEW10 ,
"adp "." OPENWORKS_SV4NSEA_LOG_CURVE_HEADER" QVIEW11
WHERE
(QVIEW2 ." R_EXISTENCE_KD_NM" = ’actual ’) AND (QVIEW1 ." WELL_S" = QVIEW2 ." WELL_S ") AND
(QVIEW2 ." SECURITY_LABELS_S" = 0) AND QVIEW2 ." WELLBORE_ID" IS NOT NULL AND
(QVIEW2 ." WELLBORE_ID" = QVIEW3 ." WELLBORE ") AND QVIEW3 ." STRAT_INTERP_VERSION" IS NOT NULL AND
QVIEW3 ." STRAT_ZONE_IDENTIFIER" IS NOT NULL AND QVIEW3 ." STRAT_COLUMN_IDENTIFIER" IS NOT NULL AND
(QVIEW2 ." WELLBORE_S" = QVIEW4 ." FACILITY_S ") AND (QVIEW5 ." DATA_VALUE_U" = ’bar ’) AND
(QVIEW4 ." ACTIVITY_S" = QVIEW5 ." ACTIVITY_S ") AND (QVIEW4 ." KIND_S" = QVIEW6 ." ACTIVITY_CLASS_S ") AND
(QVIEW6 ." CLSN_CLS_NAME" = ’formation pressure depth data ’) AND
QVIEW5 ." P_PRESSURE_S" IS NOT NULL AND (QVIEW5 ." DATA_VALUE" > 0) AND
QVIEW5 ." DATA_VALUE" IS NOT NULL AND (QVIEW4 ." ACTIVITY_S" = QVIEW7 ." ACTIVITY_S ") AND
(QVIEW2 ." WELLBORE_ID" = QVIEW8 ." WELLBORE ") AND
(QVIEW3 ." STRAT_COLUMN_IDENTIFIER" = QVIEW8 ." STRAT_COLUMN_IDENTIFIER ") AND
(QVIEW3 ." STRAT_INTERP_VERSION" = QVIEW8 ." STRAT_INTERP_VERSION ") AND
(QVIEW3 ." STRAT_ZONE_IDENTIFIER" = QVIEW8 ." STRAT_ZONE_IDENTIFIER ") AND
(QVIEW7 ." DATA_VALUE_1_OU" = QVIEW8 ." STRAT_ZONE_DEPTH_UOM ") AND
((QVIEW3 ." STRAT_ZONE_IDENTIFIER" IS NOT NULL AND (QVIEW8 ." STRAT_ZONE_ENTRY_MD" <= QVIEW7 ." DATA_VALUE_1_O "))
AND (QVIEW8 ." STRAT_ZONE_EXIT_MD" >= QVIEW7 ." DATA_VALUE_1_O ")) AND QVIEW3 ." STRAT_UNIT_IDENTIFIER" IS NOT NULL AND
(QVIEW9 ." WELL_ID" = QVIEW10 ." WELL_ID ") AND (QVIEW2 ." WELLBORE_ID" = QVIEW10 ." WELL_UWI ") AND
((QVIEW9 ." TOP_DEPTH" <= QVIEW3 ." STRAT_ZONE_EXIT_MD ") AND (QVIEW9 ." BASE_DEPTH" >= QVIEW3 ." STRAT_ZONE_ENTRY_MD ")) AND
QVIEW9 ." LOG_CURVE_ID" IS NOT NULL AND
(QVIEW9 ." LOG_CURVE_ID" = QVIEW11 ." LOG_CURVE_ID ")

39

SL
EG

GE
_P

IC
KE

D_
ST

RA
TI

GR
AP

HI
C_

ZO
NE

S a
lia

s7
 [1

, 2
]

SL
EG

GE
1_

W
EL

LB
OR

E
ali

as1
 [1

, 2
]

ali
as7

.W
EL

LB
OR

E
IS

 N
OT

 N
UL

L,
 al

ias
7.S

TR
AT

_IN
TE

RP
_V

ER
SI

ON
 IS

 N
OT

 N
UL

L,
 al

ias
7.S

TR
AT

_Z
ON

E_
ID

EN
TI

FI
ER

 IS
 N

OT
 N

UL
L,

 al
ias

7.S
TR

AT
_C

OL
UM

N_
ID

EN
TI

FI
ER

 IS
 N

OT
 N

UL
L

[1,
 2]

ali
as2

.ST
RA

T_
IN

TE
RP

_V
ER

SI
ON

 =
 al

ias
7.S

TR
AT

_IN
TE

RP
_V

ER
SI

ON
 [1

, 2
]

ali
as2

.ST
RA

T_
CO

LU
M

N_
ID

EN
TI

FI
ER

 =
 al

ias
7.S

TR
AT

_C
OL

UM
N_

ID
EN

TI
FI

ER
 [1

, 2
]

ali
as1

0.L
OG

_C
UR

VE
_ID

 IS
 N

OT
 N

UL
L

[1]

OP
EN

W
OR

KS
_S

V4
NS

EA
_L

OG
_C

UR
VE

_H
EA

DE
R

ali
as1

0 [
1]

ali
as1

0.L
OG

_C
UR

VE
_ID

 =
 al

ias
12

.L
OG

_C
UR

VE
_ID

 [1
]

ali
as1

1.W
EL

L_
ID

 =
 al

ias
10

.W
EL

L_
ID

 [1
]

ali
as1

2.L
OG

_C
UR

VE
_ID

 IS
 N

OT
 N

UL
L

[1]

ali
as3

.K
IN

D_
S =

 al
ias

5.A
CT

IV
IT

Y_
CL

AS
S_

S [
1,

2]

ali
as3

.A
CT

IV
IT

Y_
S =

 al
ias

4.A
CT

IV
IT

Y_
S [

1,
2]

ali
as5

.C
LS

N_
CL

S_
NA

M
E

=
'fo

rm
ati

on
 pr

ess
ure

 de
pth

 da
ta'

 [1
, 2

]

Pr
oje

ct
[2]

ali
as8

.T
OP

_D
EP

TH
 <

=
ali

as2
.ST

RA
T_

ZO
NE

_E
XI

T_
M

D
[2]

ali
as4

.P_
PR

ES
SU

RE
_S

 IS
 N

OT
 N

UL
L,

 al
ias

4.D
AT

A_
VA

LU
E

>
0,

ali
as4

.D
AT

A_
VA

LU
E

IS
 N

OT
 N

UL
L,

 al
ias

4.D
AT

A_
VA

LU
E_

U
=

'ba
r' [

1,
2]

ali
as1

.W
EL

LB
OR

E_
S =

 al
ias

3.F
AC

IL
IT

Y_
S [

1,
2]

ali
as1

.W
EL

LB
OR

E_
ID

 =
 al

ias
11

.W
EL

L_
UW

I [
1]

ali
as1

1.W
EL

L_
UW

I I
S N

OT
 N

UL
L

[1]
(al

ias
6.D

AT
A_

VA
LU

E_
1_

OU
 =

 al
ias

7.S
TR

AT
_Z

ON
E_

DE
PT

H_
UO

M
 A

ND
 al

ias
7.S

TR
AT

_Z
ON

E_
EN

TR
Y_

M
D

<=
 al

ias
6.D

AT
A_

VA
LU

E_
1_

O
AN

D
 al

ias
7.S

TR
AT

_Z
ON

E_
EX

IT
_M

D
>=

 al
ias

6.D
AT

A_
VA

LU
E_

1_
O)

 [1
, 2

]

ali
as8

.B
OT

TO
M

_D
EP

TH
 >

=
ali

as2
.ST

RA
T_

ZO
NE

_E
NT

RY
_M

D
[2]

ali
as9

.re
ca

ll_
id

=
ali

as8
.W

EL
L_

NA
M

E
[2]

ali
as1

0.B
AS

E_
DE

PT
H

>=
 al

ias
2.S

TR
AT

_Z
ON

E_
EN

TR
Y_

M
D

[1]

ali
as1

0.T
OP

_D
EP

TH
 <

=
ali

as2
.ST

RA
T_

ZO
NE

_E
XI

T_
M

D
[1]

SL
EG

GE
1_

P_
LO

CA
TI

ON
_1

D
ali

as6
 [1

, 2
]

OP
EN

W
OR

KS
_S

V4
NS

EA
_L

OG
_C

UR
VE

_H
EA

DE
R

ali
as1

2 [
1]

ali
as1

.W
EL

LB
OR

E_
ID

 IS
 N

OT
 N

UL
L,

 al
ias

1.S
EC

UR
IT

Y_
LA

BE
LS

_S
 =

 0,
 al

ias
1.R

_E
XI

ST
EN

CE
_K

D_
NM

 =
 'a

ctu
al'

 [1
, 2

]

ali
as1

.W
EL

LB
OR

E_
S =

 al
ias

9.S
LE

GG
E_

id
[2]

we
llb

ore
_s

am
ea

s_
rec

all
_s

leg
ge

 al
ias

9 [
2]

SL
EG

GE
_S

TR
AT

IG
RA

PH
IC

_Z
ON

E
ali

as2
 [1

, 2
]

ali
as3

.A
CT

IV
IT

Y_
S =

 al
ias

6.A
CT

IV
IT

Y_
S [

1,
2]

OP
EN

W
OR

KS
_S

V4
NS

EA
_W

EL
L_

M
AS

TE
R

ali
as1

1 [
1]

SL
EG

GE
1_

AC
TI

VI
TY

_C
LA

SS
 al

ias
5 [

1,
2]

SL
EG

GE
1_

P_
PR

ES
SU

RE
 al

ias
4 [

1,
2]

SL
EG

GE
1_

AC
TI

VI
TY

 al
ias

3 [
1,

2]
ali

as1
.W

EL
LB

OR
E_

ID
 =

 al
ias

2.W
EL

LB
OR

E
[1,

 2]

ali
as0

.W
EL

L_
S =

 al
ias

1.W
EL

L_
S [

1,
2]

ali
as2

.W
EL

LB
OR

E
IS

 N
OT

 N
UL

L,
 al

ias
2.S

TR
AT

_Z
ON

E_
ID

EN
TI

FI
ER

 IS
 N

OT
 N

UL
L,

 al
ias

2.S
TR

AT
_U

NI
T_

ID
EN

TI
FI

ER
 IS

 N
OT

 N
UL

L,
 al

ias
2.S

TR
AT

_IN
TE

RP
_V

ER
SI

ON
 IS

 N
OT

 N
UL

L,
 al

ias
2.S

TR
AT

_C
OL

UM
N_

ID
EN

TI
FI

ER
 IS

 N
OT

 N
UL

L
[1,

 2]

ali
as2

.ST
RA

T_
ZO

NE
_ID

EN
TI

FI
ER

 =
 al

ias
7.S

TR
AT

_Z
ON

E_
ID

EN
TI

FI
ER

 [1
, 2

]

SL
EG

GE
1_

W
EL

L
ali

as0
 [1

, 2
]

ali
as1

.W
EL

LB
OR

E_
ID

 =
 al

ias
7.W

EL
LB

OR
E

[1,
 2]

RE
CA

LL
_L

OG
_V

W
 al

ias
8 [

2]

ali
as8

.M
IR

RO
R_

ID
 IS

 N
OT

 N
UL

L
[2]

Pr
oje

ct
[1]

UN
IO

N
AL

L

Figure A.24: Exareme execution plan for the end to end example query

40

Table A.9: Some mappings used in the unfolding of the end-to-end Example query in the Ontop native mapping syntax (see
https://github.com/ontop/ontop/wiki/ontopOBDAModel)

target slegge:Well -{WID} :hasWellbore slegge:Wellbore -{ WELLBORE} .

source select WLB.WELL_LEGAL_NAME as WELLBORE , W.WELL_LEGAL_NAME as WID

from compass_CD_WELLBORE WLB , compass_CD_WELL W where W.WELL_ID = WLB.WELL_ID

target slegge:Wellbore -{ WELLBORE_IDENT} :hasFormationPressure

slegge:FormationPressure -{ PRESSURE_KEY} .

source select WLB.WELLBORE_ID as WELLBORE_IDENT , PRESSURE.P_PRESSURE_S as PRESSURE_KEY

from slegge1_P_PRESSURE PRESSURE , slegge1_ACTIVITY FP_DEPTH_DATA ,

slegge1_WELLBORE WLB , slegge1_ACTIVITY_CLASS FORM_PRESSURE_CLASS where

PRESSURE.ACTIVITY_S = FP_DEPTH_DATA.ACTIVITY_S and

FP_DEPTH_DATA.FACILITY_S = WLB.WELLBORE_S and FP_DEPTH_DATA.KIND_S =

FORM_PRESSURE_CLASS.ACTIVITY_CLASS_S and

FORM_PRESSURE_CLASS.CLSN_CLS_NAME = ’formation pressure depth data ’

target slegge:Wellbore -{ WLB_ID} :hasWellboreInterval

slegge:StratigraphicZone -{ WELLBORE}-{SCI}-{SIV}-{SZI}.

source select W.WELLBORE_ID as WLB_ID , WELLBORE , STRAT_COLUMN_IDENTIFIER as SCI ,

STRAT_INTERP_VERSION as SIV , STRAT_ZONE_IDENTIFIER as SZI

from slegge_STRATIGRAPHIC_ZONE Z, slegge1_WELLBORE W

WHERE Z.WELLBORE = W.WELLBORE_ID and W.SECURITY_LABELS_S = 0

target recall:LoggedInterval/recall /{ MIRROR_ID} :hasLogCurve recall:LogCurve/recall /{ MIRROR_ID };

:hasTopDepthMeasurement recall:LoggedIntervalTop/recall /{ MIRROR_ID };

:hasBottomDepthMeasurement recall:LoggedIntervalBottom/recall /{ MIRROR_ID} .

source select MIRROR_ID from recallTest_LOG_VW

target recall:LoggedInterval/recall /{ INT_ID} :overlapsWellboreInterval

slegge:StratigraphicZone -{ BRONNAVN}-{SCI}-{SIV}-{SZI}.

source SELECT LOG.MIRROR_ID as INT_ID , WELLBORE_INTERVAL.WELLBORE as

BRONNAVN , WELLBORE_INTERVAL.STRAT_ZONE_IDENTIFIER as SZI ,

WELLBORE_INTERVAL.STRAT_INTERP_VERSION as SIV ,

WELLBORE_INTERVAL.STRAT_COLUMN_IDENTIFIER as SCI FROM

recallTest_LOG_VW LOG , slegge_STRATIGRAPHIC_ZONE WELLBORE_INTERVAL ,

slegge1_WELLBORE WLB , wellbore_sameas_recall_slegge sameas WHERE

WELLBORE_INTERVAL.WELLBORE = WLB.WELLBORE_ID AND WLB.WELLBORE_S =

sameas.slegge_id AND LOG.WELL_NAME = sameas.recall_id AND

LOG.TOP_DEPTH <= WELLBORE_INTERVAL.STRAT_ZONE_EXIT_MD AND

LOG.BOTTOM_DEPTH >= WELLBORE_INTERVAL.STRAT_ZONE_ENTRY_MD

target slegge:StratigraphicZone -{ WLB_ID}-{SCI}-{SIV}-{SZI} a :StratigraphicZone ;

:name {STRAT_ZONE_ID }^^xsd:string; :hasUnit slegge:StratigraphicUnit -{SCI}-{ STRAT_UNIT }.

source select WELLBORE as WLB_ID , STRAT_COLUMN_IDENTIFIER AS SCI , STRAT_INTERP_VERSION AS SIV ,

STRAT_ZONE_IDENTIFIER as SZI , STRAT_UNIT_IDENTIFIER as STRAT_UNIT

from slegge_STRATIGRAPHIC_ZONE

Appendix B. OWL 2 Construction Patterns

BootOX [14] creates ontology vocabulary and a set of
OWL 2 axioms from a relational database. Table B.10
presents the encoding of relational database features as
OWL 2 axioms followed by BootOX. The encoding, in
general, does not lead to only one option, but several pos-
sible OWL 2 axioms. One could opt for adding all the ax-

ioms associated with a feature or only a selection of them
depending on the intended purpose (e.g., Optique requires
an OWL 2 QL ontology).
When not stated the contrary in Table B.10, a class CT ,

an object property Pf , a data property Ra and a datatype
dt represent the ontology encoding of a table T , a foreign
key fk, a data attribute a, and an SQL type t, respectively.

41

Table B.10: Encoding of relational database features as OWL 2 axioms. OWL 2 axioms are expressed in the Manchester OWL Syntax [107].
* Enumeration with only one literal

RDB feature Ontology feature OWL 2 axiom
OWL 2 profile
QL RL EL

(1) Non-binary Relation /
Table T

A class CT for the non-binary ta-
ble

Class: CT � � �

(2)
Binary Relation or
Many-to-Many Table
referencing tables T1 and T2

A property P (and its inverse
Q) associated to the classes CT1
and CT2

with local and/or global
constraints

ObjectProperty: P � � �
Q InverseOf: P � � -
P Domain: CT1

� � �
P Range: CT2

� � �
CT1

SubClassOf: P some CT2
� - �

CT1
SubClassOf: P only CT2

- � -

(3)
Data attribute in table T
of (sql) type t

A property Ra associated to the
class CT and datatype dt with
local and/or global constraints.

DataProperty: Ra � � �
Ra Domain: CT � � �
Ra Range: dt � � �

CT SubClassOf: Ra some dt � - �
CT SubClassOf: Ra only dt - � -

(4)

Foreign Key in table T1,
referencing T2, no intersec-
tion with or strict subset
of primary key

A property Pf associated to the
classes CT1

and CT2
with local

and/or global constraints

ObjectProperty: Pf � � �
Pf Domain: CT1

� � �
Pf Range: CT2

� � �
CT1

SubClassOf: Pf some CT2
� - �

CT1
SubClassOf: Pf only CT2

- � -

(5)
Foreign Key is the pri-
mary key in T1, ref. T2

Class CT1
is subsumed by class

CT2
CT1

SubClassOf: CT2
� � �

(6)
Foreign Key in table T ref-
erencing the same table

A property Pf associated to class
CT with a self-restriction. The
property Pf may also be declared
with several characteristics

CT SubClassOf: Pf some CT � - �
CT SubClassOf: Pf some Self - - �
Pf Characteristics: Transitive - � �
Pf Characteristics: Symmetric � � -
Pf Characteristics: Reflexive � - �

(7)

Primary Key or Unique
constraint in table T1 on a
foreign key fk referencing
T2

Key axiom for class CT1
and

property Pf . Pf is associated to
(local and/or global) cardinality
constraints

CT1
HasKey: Pf - � �

Pf Characteristics: Functional - � -
Pf Characteristics: InverseFunctional - � -
CT1

SubClassOf: Pf exactly 1 CT2
- - -

CT1
SubClassOf: Pf max 1 CT2

- � -
CT1

SubClassOf: Pf some CT2
� - �

(8)

Primary Key or Unique
constraint on a data at-
tribute a of (sql) type t in
table T

Key axiom for class CT and data
property Ra. Ra is associated to
(local and/or global) cardinality
constraints.

CT HasKey: Ra - � �
Ra Characteristics: Functional - � �

CT SubClassOf: Ra exactly 1 dt - - -
CT SubClassOf: Ra max 1 dt - � -
CT SubClassOf: Ra some dt � - �

(9) Composed Primary Key
in table T

Key axiom for the class CT and
the data and object properties
involved in primary key

CT HasKey: R1 . . . Rn P1 . . . Pn - � �

(10)
Not Null Constraint on a
data attribute in T , type t

Existential or cardinality restric-
tion over Ra in CT

CT SubClassOf: Ra min 1 dt - - -
CT SubClassOf: Ra some dt � - �

(11)
Not Null Constraint on a
foreign key in T1, ref. T2

Existential or cardinality restric-
tion over Pf in CT

CT1
SubClassOf: Pf min 1 CT2

- - -
CT1

SubClassOf: Pf some CT2
� - �

(12)

Check Constraint on data
attribute a of type t in ta-
ble T listing posible val-
ues v1. . . vn (n ≥ 1)

Enumeration of literals: in a re-
striction in class CT and/or as a
range of Ra. Alternatively, one
could create subclasses for each
of the values

CT SubClassOf: Ra some {v1 . . .} - - �*
CT SubClassOf: Ra only {v1 . . .} - - -
CT SubClassOf: Ra value v1 - - �

Ra Range: {v1 . . .} - - �*
CTvi

SubClassOf: CT � � �

(13)
Check Constraint on at-
trib. a in table T restrict-
ing numerical range of t

Datatype restriction: in a class
restriction in CT and/or as a
range of Ra

CT SubClassOf: Ra some dt[> x] - - -
CT SubClassOf: Ra only dt[> x] - - -

Ra Range: dt[> x] - - -

(14)

Several data attributes
a1. . . an in different ta-
bles T1. . . Tn with the
same name and type t

Group properties R1. . .Rn un-
der new superproperty Ra or
merge R1. . .Rn into new prop-
erty Ra

Ri SubPropertyOf: Ra � � �
Ra Domain: CT1

or . . . or CTn - - -
CTi

SubClassOf: Ra some dt � - �
CTi

SubClassOf: Ra only dt - � -

(15)
T1 and T2 not involved in
a inheritance relationship

Class CT1
is disjoint with class

CT2
CT1

DisjointWith: CT2
� � �

42

View publication statsView publication stats

