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ABSTRACT

We introduce a model for pulsars in which non-radial oscillations of high

spherical degree (ℓ) aligned to the magnetic axis of a spinning neutron star re-

produce the morphological features of pulsar beams. In our model, rotation

of the pulsar carries a pattern of pulsation nodes underneath our sightline, re-

producing the longitude stationary structure seen in average pulse profiles, while

the associated time-like oscillations reproduce “drifting subpulses”—features that

change their longitude between successive pulsar spins. We will show that the

presence of nodal lines can account for observed 180◦ phase jumps in drifting

subpulses and their otherwise poor phase stability, even if the time-like oscilla-

tions are strictly periodic. Our model can also account for the “mode changes”

and “nulls” observed in some pulsars as quasiperiodic changes between pulsa-

tion modes of different (ℓ) or radial overtone (n), analogous to pulsation mode

changes observed in oscillating white dwarf stars. We will discuss other defini-

tive and testable requirements of our model and show that they are qualitatively

supported by existing data. While reserving judgment until the completion of

quantitative tests, we are inspired enough by the existing observational support

for our model to speculate about the excitation mechanism of the non-radial pul-

sations, the physics we can learn from them, and their relationship to the period

evolution of pulsars.

Subject headings: pulsars:individual:PSR1237+25— pulsars:individual:PSR1919+21—

pulsars:general—stars:neutron— stars:oscillations
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1. INTRODUCTION

Upon the discovery of radio pulsations from pulsars by Hewish et al. (1968), Ruderman

(1968) proposed that the pulses arose from non-radial oscillations of a neutron star. This idea

was quickly displaced by a rotational model (Gold 1969), but Drake & Craft (1968) again

raised the possibility of pulsations when they measured individual pulse sequences for two

pulsars and found within them narrow subpulses that moved to successively earlier times

within the main pulse. Because this drift represented the presence of a “second periodicity”

incommensurate with the spin period, it was natural to propose a time-like oscillation of

the star. Subsequent measurements, however, revealed complex subpulse patterns that did

not conform to a pulsation model in any obvious way. Moreover, the persistence of unique

subpulse shapes from pulse to pulse, along with problems of phase stability we will address

in later sections, led Drake to conclude that the drifting subpulses were incompatible with

the pulsation hypothesis (see Staelin et al. 1970; Hewish 1970). Ultimately, pulsations were

abandoned in favor of purely geometric models, although they reappeared from time-to-time

in the theoretical literature (notably Hansen & Cioffi 1980; van Horn 1980; McDermott,

van Horn, & Hansen 1988; Carroll et al. 1986; Finn 1990; Reisenegger & Goldreich 1992;

Strohmayer 1993). Most recently Duncan (1998) invoked toroidal modes to account for

oscillations of soft gamma repeaters, but other than the work of Strohmayer (1992) and

Strohmayer, Cordes, & van Horn (1992), there has been no determined attempt to account

for the properties of classical pulsars with models involving non-radial pulsations.

Instead, most current models, though not all (cf. Lyne & Manchester 1988; Han &

Manchester 2001), incorporate a circulating pattern of sub-beams, whose motion about

the magnetic pole produces the drifting subpulses. In these models, pulsar emission comes

from accelerated particles that originate near the pulsar magnetic pole and travel along

curved paths in the star’s magnetic field (see Radhakrishnan & Cooke 1969; Komesaroff

1970). The radiation is confined to a narrow beam by the dipole magnetic field geometry

(Goldreich & Julian 1969) and relativistic beaming along the direction of particle motion,

which is roughly parallel to the magnetic axis, not perpendicular as in the models of Gold

(1969), Smith (1970) and Zheleznyakov (1971). The observed brightness of pulsar beams

effectively demands that the radiation is coherent, but the question of how it is produced is

not settled (Jessner, Lesch, & Kunzl 2001; Lesch et al. 1998; Melrose 1995).

Early studies of pulsar single pulses and average pulse shapes (Taylor, Manchester, &

Huguenin 1975; Lyne, Smith, & Graham 1971, and others) led to the addition of more

elaborate emission structures within the model pulsar beam. These features sweep past our

sightline and recreate the variety of pulse shapes we observe. Backer (1976) described a

target-shaped emission pattern (a central core surrounded by an annulus) that can reproduce
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a wide variety of pulse morphologies depending on whether our sightline crosses the center

of the pattern, yielding a three component pulse, or crosses only the annulus, resulting in a

one or two component pulse. Oster & Sieber (1977) added a second annulus and rotating

features to reproduce pulses with more than three components and drifting subpulses. In

1975, Ruderman & Sutherland (1975) supplied a physical basis for the model by suggesting

that the emission arises from localized discharges or sparks near the polar cap. These are

arranged in annular patterns, and rotate naturally due to the crossed components of the

magnetic and electric fields.

In addition to the fixed and drifting substructure, models must account for observations

of two kinds of discrete events observed in some pulsars; “mode changes”, which abruptly

alter the character of the substructure, and pulse “nulling”, during which the pulse emission

drops below detectable levels for one or more spin periods of the pulsar (Backer 1970a,b;

Bartel et al. 1982). In the Ruderman & Sutherland (1975) model, mode changes and

nulling result from a collapse or reorganization of the fixed and moving spark structures,

after which they must reappear with the same features they had previously.

Several reviewers have summarized observational and theoretical progress in the study of

pulsar beams. The most ambitious is Rankin (Rankin 1983a,b, 1986, 1990; Radhakrishnan &

Rankin 1990; Rankin 1993a; Mitra & Rankin 2002), who has both reviewed and synthesized

the observations into an empirical model incorporating polarization and spectral behavior.

Manchester (1995) gives a somewhat different view of the beam geometry. Most recently,

Graham-Smith (2003) has published a succinct review that includes both “normal” and

millisecond pulsars.

Against this backdrop, as a student project, we conducted a re-analysis of archival data

on PSR0943+10 to look for evidence of non-radial pulsations, which, according to theory,

might have periods ranging from milliseconds to seconds (McDermott, et. al 1988). Our

analysis, which will appear in a subsequent paper, convinced us that time-like oscillations

with a period of 31.8 msec are a viable alternative to the rotating carousel of emission beams

proposed by Deshpande & Rankin (2001), but we could find no compelling reason other

than aesthetics to prefer a pulsational model. In search of a definitive test, we reviewed the

extensive observational literature on pulsars, and found intriguing evidence for non-radial

pulsations as a universal mechanism for drifting and stationary subpulses. Moreover, we

found that the original reason for abandoning pulsational models does not apply to non-

radial pulsations of high azimuthal degree (ℓ) in which our sightline crosses pulsation nodal

lines. The presence of nodal lines increases the variety and subtlety of expected subpulse

behavior.

The purpose of this paper is to introduce a model in which high ℓ pulsations aligned to
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the pulsar magnetic pole take the place of the fixed and moving structures of the circulating

spark model, but other details of the geometry remain unchanged. In this paper we will

explore only the phenomenological consequences of this substitution, and compare them

qualitatively to published observations. We will not discuss in any detail problems in the

physics of pulsed radio emission or polarization mechanisms. In §2, we will present the

basic features of our model, and explore its observational properties, some of which are not

immediately obvious. Our main purpose is to lay the groundwork for future application of the

model to radio measurements of individual and average pulse profiles. In §3 we will examine

qualitative evidence in favor of our model, reserving quantitative comparisons for subsequent

papers. The strongest evidence we will present comes from published measurements that

show subpulse phase behavior difficult or impossible to explain using the circulating spark

model, but demanded by high ℓ pulsations. We will also discuss analogies between pulsar

behavior and that of known pulsating stars, specifically the rapidly oscillating peculiar A

stars (roAp) and the pulsating white dwarf stars. This will demonstrate that there are

precedents for the model behavior we propose. In §4, we will speculate about theoretical

aspects of our model, such as the pulsation driving mechanism, and we will introduce the

notion of “horizontal mode trapping”, which can account for the high ℓ character of the

proposed modes and relate them to the observed period evolution of pulsar beam widths.

We will end by highlighting the potential for neutron star seismology, which can yield direct

measurements of interesting physical quantities like the buoyancy of neutron star surface

oceans.

2. MORPHOLOGY OF NON-RADIAL PULSATIONS

In this section we will describe the basic emission patterns that we expect non-radial

pulsations to produce. It is simplest, though not strictly necessary, to confine ourselves to

pulsations where the material displacements follow spherical harmonics with azimuthal order

m = 0. Using the notation Robinson, Kepler, & Nather (1982) applied to white dwarfs, we

can express displacements as follows:

ξ = Yℓ,0(Θ,Φ) cos(wtt + φ) (1)

Where the Y is a spatial distribution of pulsation amplitudes, Θ and Φ are spherical

coordinates aligned to the magnetic axis of the star, and cos(ωtt+φ) is a time-like variation.
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2.1. Fixed and Variable Pulse Structure

Already we see in equation 1 the expression of an important feature of pulsar emission.

In a series of individual pulses from a pulsar there may be no two alike, yet the average of

a sufficient number of pulses builds up a profile that is stable in longitude and repeatable.

Figure 1 illustrates this behavior with two sequences of pulses from pulsar PSR0943+10 and

their respective averages. A series of “driftbands” that represent the positions of subpulses

in successive spins of the pulsar, can be seen going from right to left. Note that within

each individual pulse there are two, sometimes three, subpulses, but the average pulse shape

is single-peaked. The abscissa is actually time within the pulse, but as conventional we

plot longitude calculated according to the formula Φ = 360◦/P1, where P1 is the pulsar

spin period. Following standard convention, we will use P2 to represent the time interval

between consecutive subpulses (the horizontal spacing between subpulses in figure 1) and

P3 to represent the time required for subpulses to return to a fiducial longitude (the vertical

spacing between subpulses in figure 1).

Though they exhibit large pulse-to-pulse amplitude variations, the drifting pulses in

figure 1 are modulated, on average, by a longitude stationary envelope. In some pulsars

this has more complex structure than in PSR0943+10, as we shall see in a moment. In her

review and synthesis of pulsar data, Rankin (1983a) expressed the difference between the

information carried by average pulsar profiles and sequences of individual pulses thus: “it

seems that profiles and pulse sequences must then each manifest some largely independent

physical basis in the emission region.” As seen in equation 1, non-radial oscillations offer a

natural separation between fixed and variable structure in the form of spatial and time-like

portions of a normal oscillation mode.

In addition to oscillations obeying equation 1, we must also propose that these os-

cillations are coupled to the radio emission mechanism, and that they can generate time-

modulated emission according to ξ of equation 1. For consistency with the observations, we

do not want the pulsations to subtract emission in the negative part of their cycle, so in our

simulations we have kept only positive values of ξ. An alternative approach, analogous to

the method of Edwards & Stappers (2002), would be to add a longitude-dependent bias to

Fig. 1.— Two sequences of 100 pulses each from 430 Mhz observations of PSR0943+10

(lower panels), and their averages (upper panels). The subpulses show organized drift from

right to left, along with disorganized amplitude behavior, but their averages converge to

similar envelopes. The data are from Suleymanova et al. (1998) and are also published in

Deshpande & Rankin (2001).



– 6 –

ξ. This would change the appearance of the simulated individual and average pulse shapes,

and if large enough, would mute the nodal structure in the average pulse shapes relative to

those shown in this paper.

We also assume that for a fixed radio frequency band, the emission originates at about

the same altitude above the magnetic pole. This means that longitudinally distinct regions

on the stellar surface will correspond to longitudinally separated pulse components, though

the separation grows larger with increasing emission altitude due to the dipole field geometry

(Komesaroff, Morris, & Cooke 1970; Thorsett 1991). This assumption is consistent with the

measurements of Gil (1991) and Gil & Kijak (1992), who found similar emission heights for

the various pulse components, but in conflict with the picture described by Rankin (1993a)

or even Gangadhara & Gupta (2001) (see also Gupta & Gangadhara 2003). Finally, we note

the sinusoidal pulses that result from equation 1 will not be sufficient to reproduce the non-

sinusoidal profiles seen in figure 1, or the large variations in pulse size, but they will illustrate

the essential morphological features pulsations can produce. This level of abstraction will

allow later incorporation of simulated emission mechanisms (e.g. shot-noise models, Rickett

1975; Strohmayer et al. 1992) without affecting the tests of our model presented in this

paper.

Figure 2 shows oscillations with ℓ = 70 andm = 0 mapped onto the surface of a neutron

star aligned with the magnetic axis. Dark regions indicate negative displacements and light

regions positive ones. After a half cycle of the pulsations, the dark regions would be light

and vice versa, but the nodal lines separating them would remain unchanged, except for

rotation of the whole pattern about the rotation axis of the star (shown as a line extruding

from the top of the sphere in figure 2). This model is similar to the “oblique pulsator”

model developed for roAp stars by Kurtz (1982), except that ℓ is much higher here, and

the pulsar only emits from a small region near the magnetic pole. We have indicated the

boundary of the emission region in figure 2 with a circle around the magnetic pole. In §4

we will present a justification for why this boundary should coincide with a nodal line, and

we will propose that the oscillations have different amplitude, perhaps even zero amplitude,

outside of this boundary, a property we have not tried to reproduce in figure 2. Following

convention, we will use α to denote the angle between the pulsar’s spin and magnetic axes,

and β for the minimum angular separation between the magnetic pole and our line of sight,

which is sometimes also called the “impact parameter”.

If the pulsar in figure 2 rotates such that the emission region passes under our line of

sight, we can observe two different kinds of variations. Because the oscillation amplitude is

always zero at nodal lines, but can be non-zero elsewhere, the nodal lines sweeping past our

line of sight can create pulses with a repetition rate related to the rate of nodal line passage.
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To estimate this rate, consider the case α = 90, β = 0. In one full spin of the star our

sightline crosses each nodal line twice, so the crossing rate is P1/2ℓ, but the period of a full

cycle of the variations is twice this amount, or P1/ℓ, because ξ changes sign at each nodal

line. For arbitrary α, the number of crossings is reduced by sin(α), so the apparent average

period of the spatial variations is:

Pnode =
P1

ℓsin(α)
(2)

For simplicity, we have suppressed the more complicated dependence on β, which can

be seen in the inset of figure 2. The important feature to recognize is that the zeroes caused

by the spatial node pattern remain at fixed longitude in subsequent spins of the pulsar unless

either ℓ or the emission geometry changes.

At the same time as these nodal lines sweep past, the time-like oscillations generate

pulses with a repetition rate related to the oscillation frequency as follows:

Ptime =
2π

ωt
(3)

The behavior we observe in a pulsar beam depends upon the relationship between these

two periods. If Pnode > Ptime, then we will see subpulses narrower than the nodal line struc-

ture, and, as long as Ptime is incommensurate with P1, these subpulses will drift in longitude.

Furthermore, as long as the measurement does not span a nodal line, the separation between

subpulses P2 will be approximately equal to Ptime. P2 is not exactly Ptime because the nodal

structure that modulates the amplitudes of the subpulses also affects their times-of-maxima.

For Pnode > Ptime, this causes longitude dependent subpulse drift such that P2 is less than

Ptime near nodal lines. In Appendix A we quantify this behavior and show examples of the

driftband curvature it generates.

Fig. 2.— An oblique pulsator model for pulsar beams, showing an ℓ = 70, m = 0 spherical

harmonic aligned to the magnetic axis of a neutron star. The angle between the rotation

axis and magnetic pole is α = 50◦ in this illustration. The circle around the magnetic pole

in the enlarged view denotes the boundary of the emitting region. This region is crossed by

four sightlines with different impact parameters (β, see text). For each sightline, the inset

shows the corresponding rectified slice of the spherical harmonic, representing the average

beam profile. At the boundaries corresponding to nodal lines, subpulse phase changes by

180◦, denoted by alternating + and − signs in the figure.
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In contrast to the appearance of individual pulses, the average of a sufficiently large

number of pulses will reveal the fixed nodal line structure. In the inset of figure 2, we

have shown what this nodal line structure would look like by plotting various traverses our

sightline might make across the magnetic pole. For each traverse, we have plotted a rectified

spherical harmonic to simulate the average of many spin periods where emission occurs only

when ξ is positive in equation 1. Our figure is intentionally similar to that of Backer (1976),

but whereas the spacing and width of his annular features was arbitrary, ours follows the

spacing and shape of spherical harmonics. We will return to this and other features after

considering the case where Pnode < Ptime.

For Pnode < Ptime, individual pulses show no structure significantly narrower than the

nodal line spacing, but the modulation of fixed pulse components at Ptime can still generate

quasi-stationary driftlike variations. We have described the approximate behavior of pulse

maxima for Pnode < Ptime, in Appendix A, and have shown an example of synthetic data

for this case in the right hand panel of figure 3. Measurements of P2 from a single pulse

in this case will be strongly affected by Pnode, making it difficult to estimate Ptime without

modeling. In spite of these differences, the average of a large number of pulses will look the

same as in the case previously discussed, and as simulated in the inset of figure 2.

For both cases, there is a 180◦ shift in subpulse phase between pulse components sep-

arated by a nodal line. This has been indicated by alternating + and − signs in the inset

of figure 2. This means that the driftbands caused by drifting subpulses, like those in fig-

ure 1, will not be continuous across nodal lines. We have simulated this behavior in figure 3.

The left hand panel shows a model representing PSR0943+10, where the sightline traverse

resembles the β = 3.4◦ case (with outer components missing), or the β = 5.7◦ case shown in

figure 2. No nodal line is crossed, and the drift is continuous across the whole profile. On the

right is a model representing the 5-component profile of PSR1237+25, whose impact param-

eter is smaller. For this model, adjacent pulse components have different driftband phase,

so there is no continuous pattern extending across the profile. The model we have used to

represent PSR1237+25 also has Pnode < Ptime, and illustrates the nature of the drifting in

Fig. 3.— Oblique pulsator simulations representing individual and average pulse profiles

of PSR0943+10 (left) and PSR1237+25 (right). The PSR0943+10 simulation uses ℓ = 83,

α = 11.5◦, β = 5.4◦, P1 = 1.098 s, and Ptime = 31.78 msec. There are no nodal lines in the

pulse window, and Ptime < Pnode, so subpulses appear to drift continuously across the profile.

The PSR1237+25 simulation uses ℓ = 85, α = 53◦, β = 0◦, P1 = 1.382 s, and Ptime = 89.90

msec. There are four nodal lines in the pulse window, and Ptime > Pnode so subpulses appear

as quasi-stationary variations with phase reversals at the nodal lines.
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that case.

2.2. Requirements of the Model

The model properties described so far are broadly consistent with the observed behavior

of pulsar radio emission, but to focus the discussion onto specific tests, we will state as

succinctly as possible three definitive requirements of the pulsation model for comparison

with observations.

1. At the nodal line separating adjacent pulse components, subpulse amplitudes should

be zero, and their phase should jump by 180◦.

This assumes that only one pattern of nodal lines is present at a time, an assumption

that could be violated if several pulsation eigenmodes are excited simultaneously, as occurs in

the white dwarf stars. Note that 1 does not require the radio emission be zero at nodal lines,

but rather that the modulated component of the emission be zero; we have not explicitly

required that all of the emission come from the pulsations. As a corollary to requirement 1,

subpulse phase should drift almost linearly between the 180◦ jumps, to within the effects of

relativistic aberration and delay (see Gil 1991). If, however, the subpulse phase is inferred

from the times-of-maxima of individual subpulses, these will follow the curvature calculated

in Appendix A. The literature on driftband curvature (e.g. Wright 1981; Krishnamohan

1980) does not account for the possibility of 180◦ phase jumps, but we will show in §3 that

they have been observed in a number of stars, most recently and dramatically by Edwards,

Stappers, & van Leeuwen (2003).

2. The spacing between fixed pulse components should follow the same distribution as a

spherical harmonic sampled along a single sightline.

This requirement has to incorporate the effects of β, which is the first of several compli-

cations. The second complication lies in the radio frequency dependence of average profiles,

which is far from simple (Mitra & Rankin 2002). It is possible to understand these profile

dependencies in the context of a radius to frequency mapping model, as first proposed by

Komesaroff, Morris, & Cooke (1970) and explored by Thorsett (1991). In this model, lower

frequency observations measure emission from a higher altitude, where the dipole field has

diverged more. Since the emission is apparently tangent to the magnetic field, this diver-

gence introduces a frequency dependent “magnification”. This magnification broadens pulse
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components at low frequencies compared to their higher frequency counterparts, and changes

the β of effective sightline, since the particles emitting at higher altitude originated closer to

the magnetic pole. However, if the magnification follows a dipole scaling, the ratios between

component spacings will be preserved. Another difficulty arises from the Gaussian shape

(Kramer et al. 1994) of measured pulse components, whose half-widths will differ from the

cosine-like nodal regions of our model. We can mitigate this by comparing our model to

measurements of pulse component maxima instead of widths, when possible. Finally, the

emission we see probably represents an integral over some area on the star, due to the finite

radio bandwidth and perhaps divergence of the emission itself. Together these problems

make definitive tests problematic, but we will show that the average beam geometries ex-

plored by Rankin (1990, 1993a), Gould (1994), and Gil, Kijak, & Seiradakis (1993), are

crudely compatible with the requirements of our model.

3. Within the same pulse component, subpulses follow the relationship

1

P3

=
1

Ptime
−

n

P1

, (4)

where nPtime ≈ P1.

This arises because P3 is simply a beat between P1 and Ptime in our model. This

relationship is the same as that given by Staelin et al. (1970) for pulsational models, except

we have substituted Ptime for P2. As we have discussed, when ℓ is sufficiently large that one

or more nodal lines appear in the observed pulses, P2 is not necessarily a good estimator

of Ptime, thus we cannot rule out the existence of stable clock based solely on the measured

irregularity of P2. According to Staelin et al. (1970), one of the primary reasons for rejecting

pulsational models for drifting subpulses was the relative instability of P2 compared to P3. In

§3, we will answer this objection to pulsation models, thirty-four years late, by reproducing

observations of PSR1919+21, the first pulsar discovered. We will see that a model satisfying

requirement 3 can simultaneously exhibit variations in P2 like those measured by Drake &

Craft (1968) and Backer (1970c).

As a corollary to 3, neither Ptime nor P3 should be affected by the radius-to-frequency

mapping that broadens Pnode at lower radio frequencies. So while the components of an

average profile grow farther apart when observed at low frequency, the time-like pulses will

not. Once again, it is crucial to recognize that P2 may not be a good estimator of Ptime,

especially when Ptime exceeds Pnode. In that case measurements of P2 can be dominated

by the nodal line structure instead of Ptime. As we will discuss in §3, measurements of the

frequency dependence of P2 show negligible frequency dependence for those pulsars where

Ptime < Pnode, and an increasing frequency dependence as Pnode approaches Ptime (Izvekova

et al. 1993; Gil et al. 2002), consistent with the requirements of our model.
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3. COMPARISON TO OBSERVATIONS

3.1. Subpulse Phase Jumps

A phase jump of 180◦ is not subtle behavior, so if our model is correct then this property

of drifting subpulses should have been observed repeatedly. Interestingly, the first measure-

ment of phase differences between adjacent pulse components came relatively early, in Taylor

et al. (1975), but its significance for pulsation models was not recognized or pursued. Tay-

lor et al. (1975) constructed individual time series for each of the five pulse components

in PSR1237+25, and cross-correlated them. With the exception of the central component,

their analysis showed that components adjacent to each other in longitude have opposite

subpulse phase (see their figure 11). This behavior required Oster & Sieber (1977) to place

the emission regions on their inner circulating carousel out of phase with those on the outer

(see figure 13 of Oster & Sieber 1977), and led Hankins & Wright (1980) to propose a

spiral emission pattern. In addition to PSR1237+25, Taylor et al. (1975) found similar anti-

correlations for the components of PSR0329+54. Eleven years later, Prószyński & Wolszczan

(1986) applied the same analysis with better resolution to PSR1919+21, PSR0809+74, and

PSR1237+25 (again). All three of these objects show behavior consistent with 180◦ jumps

in their subpulse phases in at least one radio band.

In addition to these four objects, Edwards, Stappers, & van Leeuwen (2003) recently

applied their two-dimensional fluctuation spectrum technique to PSR0320+39, and found

dramatic evidence for phase and amplitude modulation like that expected at a nodal line.

In figure 4, we have reproduced figure 3 of their paper, which was largely responsible for

guiding us to the model we are proposing. As Edwards & Stappers (2002) point out, the

two-dimensional Fourier transform as they apply it makes use of all the phase information in

the data to produce phase and amplitude envelopes with high signal-to-noise ratio even for

modest quality data. In figure 4, the phase envelope shows the 180◦ phase shift we expect

at a nodal line, and almost linear behavior in between (a 60◦/◦ slope has been removed from

the data).

Fig. 4.— Subpulse amplitude (upper panel) and phase (lower panel) envelopes for

PSR0320+39, reproduced with permission from Edwards, Stappers, & van Leeuwen (2003).

The upper panel also shows the average pulse shape (dotted line). The subpulse amplitude

envelope shows a minimum near zero at the same longitude as a 180◦ shift in the phase en-

velope, consistent with the requirements of the oblique pulsator model. The phase envelope

is plotted three times representing analysis via three different techniques. A 60◦/◦ slope has

been removed from the phases.
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At the same longitude as the phase shift, the subpulse amplitude is near zero, as required

at a nodal line. This figure evokes comparisons to figure 14 of Kurtz, Shibahashi, & Goode

(1990), which shows a similar phase shift in the rapidly oscillating Ap star HR3831 as

rotation changes the viewing geometry of the pulsation nodal structure. We note that our

model requires symmetry in the pulse components which means that a second phase jump

should appear in the profile of figure 4. In their subsequent paper Edwards & Stappers

(2003) detected such a jump near the right hand edge of the profile.

Edwards & Stappers (2003) applied a similar analysis to PSR0809+74 at two fre-

quencies, with results that are more challenging for our model. The phase envelopes do not

appear to be linear, and there are abrupt phase shifts not equal to 180◦. Since the emission

we observe is an integral over some frequency range and perhaps over some area on the

star, we speculate that abrupt changes can be “washed out” by these inherent limits to the

longitude resolution, especially at low frequency where the pulse components change their

appearance most rapidly (Thorsett 1991). Whether PSR0320+39 is the lucky exception or

the norm will require more data to tell. At any rate we do not think the problems with

PSR0809+74 should overwhelm our model, especially when compared to the elaborations

these phase changes require in the drifting spark model (Edwards & Stappers 2003), but

caution and careful modeling will be required.

For PSR1919+21, the prototype of pulsars and of drifting subpulses, we have reproduced

a longitude resolved cross-correlation map from Prószyński & Wolszczan (1986) in the left

hand panel of figure 5. This is a contour plot of the cross-correlation of the time series at

each longitude with that at a reference longitude. The maxima occur at lags where the

subpulse peaks align and minima where peaks align with troughs. For subpulses that drift

uniformly from one side of the profile to the other, these diagrams should be crossed by bands

of continuous slope proportional to the drift rate. Instead, we see sloping bands punctuated

by two phase inversions, indicating that at those longitudes the subpulses abruptly change

their phase.

To illustrate that pulsations can reproduce this behavior, we have simulated PSR1919+21

Fig. 5.— A comparison of longitude-resolved cross-correlation maps for PSR1919+21. The

left panel shows the cross-correlation of 1420 MHz time series data from each longitude with

that at a reference longitude, reproduced with permission from Prószyński & Wolszczan

(1986). The right panel shows the cross-correlation map of simulated data using an oblique

pulsator model with ℓ = 100, α = 45◦, β = −2.35◦, P1 = 1.337 s, and Ptime = 32.01 msec.

The phase reversals at ∼ −30 and ∼ −8 msec correspond to the locations of nodal lines in

the model. Solid contours correspond to positive correlations.
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with a model like that shown in figure 2. The model has only five parameters, α, β, P1,

ℓ, and Ptime, the values of which are listed in the caption to figure 5. First we generated a

synthetic light curve using the positive values of ξ in equation 1 sampled along a sightline

defined by α and β. For each time sample in the light curve, we changed the longitude by

∆Φ = 360◦∆t/P1, and the pulsation phase by ωt∆t, where ∆t is the time resolution. We

eliminated data outside the observed pulse window, and constructed individual time series

at each longitude. Finally, we cross-correlated these time series using the formula provided

in Prószyński & Wolszczan (1986), and produced the contour map shown on the right hand

side in figure 5. We chose model parameters based on published values (except for ℓ), in

some cases adjusting them slightly to improve the fit, which was done by eye. The model

parameters should be regarded as illustrative only; no attempt was made to measure the

quality or uniqueness of the fit.

In figure 6, we show individual pulse profiles for our model of PSR1919+21, to emphasize

the variations that occur in P2 even though the pulsation frequency is constant. We have

indicated two different measured values of P2 similar to those given by Backer (1970c),

neither of which is close to the input oscillation period of 32.01 msec. We conclude that

the published measurements of PSR1919+21 are qualitatively consistent with a pulsational

model incorporating a stable pulsation period and high ℓ.

We performed a second simulation for PSR1237+25, with the results pictured in figure 7.

Once again the qualitative similarity is encouraging. In this star, more of the profile seems to

be “missing” than in the previous one. Our model offers no ready explanation for these zones

where the pulsed emission disappears, but it seems that the mechanism for generating pulsed

emission fails. This failure could also explain the asymmetry in the profile of PSR0320+39

that we discussed in conjunction with figure 4. To compound the problem, Radhakrishnan

& Rankin (1990) report that the pulsed emission seldom appears in the core component,

and the polarization there is different, neither of which has any obvious basis in our model.

On the contrary, the zone at the pole of a spherical harmonic has the smallest area and

therefore the largest pulsational displacements (to make the surface integral equal to those

of other zones), so unless some mechanism saturates we expect larger amplitudes from the

core.

We can put these issues aside pending deeper investigation of the emission mechanism,

Fig. 6.— Synthetic individual pulse profiles for PSR1919+21, generated using the same

model as in figure 5. The left-hand side shows subpulse separations similar to those measured

by Backer (1970c). The right-hand side shows a larger number of pulses, making the

amplitude modulation by nodal lines more apparent.
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but observations like those described in Hankins & Wolszczan (1987) offer a more direct

challenge to our model. They analyzed PSR1918+19 using the same cross correlation tech-

nique as shown in figures 5 and 7, and found much different behavior. There is evidence

in that pulsar for different drift rates in each of the 3 components of the average profile.

We see no obvious way to reproduce the diagrams of PSR1918+19 with a single pulsation

frequency, but we note that the time series were very short (just 27 pulses in one case) and

the inclination α is unusually small. More measurements and detailed modeling may lead to

a solution.

3.2. Pulse Components and Their Separations

Now we consider the spacing between pulse components in the average profiles of pulsars.

If the components are related to the zones of a spherical harmonic, as we propose, then they

cannot have arbitrary widths and separations. For example, in our pulsation model, the

angular separation between the pulsation pole and the first nodal line is ∼ 0.44 times the

separation between the pole and second nodal line, independent of ℓ as long as ℓ is high.

Similarly, first and second antinodes have angular separations from the pulsation pole in the

ratio ∼ 0.55. We expect the modulated pulse components in pulsars with β = 0 to follow

similar relationships. PSR1237+25 is an good example, since it has five components and

Lyne & Manchester (1988) and Rankin (1993b) give it β ≈ 0 (as measured from rotation

of the linear polarization angle). As an illustration, we have plotted in figure 8 the average

profile of PSR1237+25 along with a β = 0 sightline through rectified spherical harmonic of

ℓ = 85. Note that the actual ℓ at the surface of the pulsar will be higher, depending on how

much magnification the dipole field geometry has imposed.

It would be much better, though quite difficult, to compare the spherical harmonics to

a statistical sample of pulsars with known β. Fortunately, Rankin (1990, 1993a), Gould

(1994), Gil, Kijak, & Seiradakis (1993), Kramer et al. (1994), and Mitra & Deshpande

(1999) have studied the ensemble properties of pulse shapes and uncovered consistent ratios

between the core and annular emission components after adjusting for or eliminating the

effects of α and β. These ratios are statistical averages suitable for comparison to spherical

harmonics, but first we will discuss their dependence on P1.

Fig. 7.— A comparison of longitude-resolved cross-correlation maps for PSR1237+25. As in

figure 5 the left panel shows a map reproduced from Prószyński & Wolszczan (1986) for

data at 408 MHz. The right panel shows the map for simulated data using an oblique

pulsator model with ℓ = 85, α = 53◦, β = 0◦, P1 = 1.382 s, and Ptime = 89.90 msec.
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Rankin (1990) found that the angular size of the central emission component or “core”

follows a P
−1/2
1

dependence, when allowance is made for variations in α. This dependence is

the same as that Goldreich & Julian (1969) calculated for the size of the polar cap delineated

by open magnetic field lines, i.e. those lines that do not close within the velocity-of-light

cylinder at cP1/2π. In the Goldreich and Julian model, this cap is the region from which

charged particles stream off the spinning pulsar, providing both a mechanism for shedding

angular momentum, and the possibility for radio emission from above the magnetic polar

cap. The P
−1/2
1

dependence of emission cores measured by Rankin suggests that they are

related to this Goldreich-Julian polar cap, although we should note that Lyne & Manchester

(1988) measured a different P1 dependence from Rankin.

In addition to the functional dependence, Rankin (1990) noticed that at any fixed P1,

the angular half width of pulsar emission cores was the same as the calculated apparent

angular size of the Goldreich-Julian cap, e.g. about 2.5◦ for P1= 1 s. This led her to suggest

that the core emission fills the cap near the pulsar surface. While appealing in its simplicity,

this explanation requires that the annular emission patterns originate at different heights

along the last open field lines. Gil (1991) has criticized this suggestion on observational

grounds, but provided no alternative physical reason for the emission core to follow the

scaling of the magnetic cap. As we will discuss in §4, our model suggests an explanation if

the boundary separating open and closed field lines can act as a “mode trapping” boundary,

which is always coincident with a pulsation node. The size of the core region would then

have quantized values that scale with P1 according to the to size of the polar emission cap.

Based upon her conclusion that the emission core size depends only on P1, and upon her

measurements of the annular emission regions which show the same P1 dependence, Rankin

(1993a) was able to infer that the ratio of the angular sizes of the inner and outer emission

cones is 1.32, as measured at the outer half-power points. In similar fashion, Gould (1994)

measured half-widths for the core and annular zones and found that the core components

are 1.4 times as wide.

If we compare these measured component ratios to analogous ratios for the components

of a spherical harmonic observed along a β = 0 sightline, we find that the ratio of the half-

widths of the core and annular components in the model is ∼ 1.49 independent of ℓ, or about

6% higher than the Gould measurement of 1.4. The ratio analogous to Rankin’s inner and

outer cone widths is not as good a match at ∼ 1.72, 23% larger than Rankin’s measurement.

However, Gil, Kijak, & Seiradakis (1993) have found evidence for a different angular size of

Fig. 8.— A comparison between a β = 0 slice through a spherical harmonic of ℓ = 85 and

the average pulse profile of 1237+25 measured at 320 MHz (see Rankin 1986).
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the inner components in five component pulsars, and the ratio of this innermost component

with the outermost one is 1.62, again about 6% below the 1.72 ratio measured in our model.

In §4 we will discuss how our model might lead to more than one quantized value for the

inner and outer annuli if different numbers of nodal lines are trapped within the polar cap.

As we will discuss, there is evidence for this kind of quantization in the core component as

well, but it has been interpreted as a preferred inclination angle α (Rankin 1990). For now,

even if the results are somewhat ambiguous, it is gratifying to be able to make any testable

predictions at all about the shape of average pulsar profiles.

3.3. The Radio Frequency Dependence of Drifting Subpulses

In the process of addressing model requirements 1 and 2 from §2, we have inciden-

tally shown that the formula in requirement 3 is not necessarily contradicted by changes in

P2. Strict confirmation of requirement 3 will be difficult, because all attempts to measure

Ptime are badly aliased by the narrow, periodic pulse window, although PSR0943+10 looks

promising in the studies of Deshpande & Rankin (2001). The best strategy may be to

concentrate on the wider profiles measured when α is small, since the aliasing will not be

as bad. Fourier methods, especially the two dimensional transform of Edwards & Stappers

(2002), will be indispensable to this effort, while direct measurements of P2 in single or

multiple pulses are misleading, as we have seen in our model of PSR1919+21.

The radio frequency dependence of P2 is another area where the behavior of subpulse

maxima can be misleading. Our model requires that Ptime and P3 be invariant with

radio frequency, but we have already seen that P2 will vary near nodal lines, even when

Ptime does not (see Appendix A). Consequently, since observing at a different frequency

changes the apparent longitude of the nodal lines, P2 can vary with radio frequency even

though Ptime remains invariant. Qualitatively, we expect the radio frequency dependence of

P2 to approach zero when Ptime is much smaller than Pnode and no nodal lines are near. For

Ptime approaching Pnode, the change in Pnode with radio frequency will modulate Ptime as

well and introduce a frequency dependence into P2. In the limit of very large Ptime, the radio

frequency dependence approaches that of the average components.

Izvekova et al. (1993) have studied the frequency dependence of subpulses in four

pulsars. They found that P3 does not change with radio frequency, consistent with the

requirement of our model. For P2, the frequency dependence is in all cases less than that of

the average profile, also consistent with our model. For PSR0031-07 and PSR1133+16, both

of which have continuous driftbands across the profile, the frequency dependence of P2 is

very weak, ∼ ν−0.05 and ∼ ν−0.06 respectively, while the frequency dependence of the average
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profile is about ∼ ν−0.3. The other two pulsars show larger frequency dependencies for P2,

but one of these is PSR0320+39, which we now know has multiple components separated

by phase jumps, as shown in figure 4. This means that the subpulse separation is similar

to the separation between stationary profile components, and we expect a larger frequency

dependence in this case. It will be interesting in future quantitative studies to attempt to

reproduce the exact radio frequency dependence of the subpulses for individual pulsars by

tuning Ptime. In principle, each independent radio frequency measurement offers a separate

constraint on Ptime that might be useful in verifying its stability with respect to P3.

3.4. Mode Changes and Nulls

A number of pulsars exhibit abrupt changes in their drifting subpulse behavior (Rankin

1986) or their average pulse profiles (Bartel et al. 1982), or both. In some examples,

these changes are cyclical or quasi-cyclical, such that the pulsar successively visits each of

two or three modes (e.g. PSR0031-07). A much larger number of pulsars (Rankin 1986),

including many of those with mode changes, undergo “nulls”, in which the radio emission

falls below detectable levels. The interesting property of these variations in the context of

our pulsation model is the “memory” the pulsar must retain in order to return to the same

states repeatedly. Inasmuch as pulsations represent eigenmodes of the neutron star, their

eigenperiods reflect a durable physical structure that will vary only secularly as the star cools

and slows down its spin. This means that a mode excited to observable amplitude and then

damped can return again with essentially the same period.

Among the known pulsators, white dwarfs provide some exceptional examples of this be-

havior. The hydrogen atmosphere variable (DAV) white dwarf G29-38 sometimes oscillates

with very large amplitudes in a dominant mode with ∼ 610 s period, then changes abruptly

to a large dominant mode at ∼ 809 s, and then to very low amplitude pulsations with no

dominant mode (Kleinman 1998). This mode changing behavior suggests the exchange of

energy between eigenmodes with different amplitudes (for the same energy content), though

this has not been established with certainty (Dziembowski 1982; Wu & Goldreich 2001).

We note the similarity of this behavior to pulsar mode changes and nulling. Pulsar mode

changing involves changes in subpulse drift rates and in the mean profiles, both of which

we might expect for changes between modes of different degree ℓ. Likewise, changes in the

subpulse drift rate only might correspond to changes in the radial eigennumber n. Further-

more, the exponential recovery of drift rates after nulls in PSR0809+74 (Lyne & Ashworth

1983), suggests relaxation into a normal oscillation mode after a mode interaction. In the

same star van Leeuwen et al. (2002) found that the pulsar is often, and maybe always, in
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a different drift mode immediately following a null, which shows that they two phenomena

are physically related. While it is possible to interpret this in the drifting spark model (van

Leeuwen et al. 2003), pulsation mode switching may offer a more natural explanation.

Finally, evidence that nulling and mode changing are global phenomena comes from the

pulsars with interpulses PSR1822-09 and PSR1055-52. Fowler, Wright, & Morris (1981)

have observed that the interpulse emission in PSR1822-09 changes its intensity when the

main pulse changes between burst and quiescent modes. Likewise, (Biggs 1990) found

intensity correlations between the interpulse and main pulse in PSR1055-52, and suggested

non-radial oscillation as a possible mechanism for communication between the poles.

4. DISCUSSION

Our main purpose in this paper has been to set forth the requirements of a model for

pulsar beams in which non-radial oscillations of high ℓ replace the primum mobile of drifting

sparks in the Ruderman & Sutherland (1975) model. This groundwork will clarify future

applications of our model to individual pulsars, which we will begin in a forthcoming study of

PSR0943+10. Although quantitative investigations are required for definitive tests, we have

presented observational evidence that our pulsation model should be an active contender

for the attention of observers and theorists alike. We will continue with some theoretical

speculation about the nature of the pulsations.

4.1. The Nature of the Pulsations

When we invoke non-radial oscillations in our model, we mean any oscillations in which

time-like variations are accompanied by spatial nodal lines that rotation can carry past our

sightline. Immediately, this suggests various deformations that might appear in the core,

crust, or ocean of a neutron star (McDermott, et. al 1988), but we should not rule out other

possibilities such as oscillations in the magnetosphere above the magnetic pole (e.g. Rylov

1978; Staelin et al. 1970; Schopper et al. 2002). The main problem we will encounter in

identifying the pulsations is that most of the oscillations we can propose have frequencies too

high to account for pulses with the repetition rate of 30 msec typical for subpulse periods.

To be fully general we also should not rule out high frequency oscillations that are “switched”

at low frequency, but we will find little guidance in pulsar literature for models of this sort.

The two quantities that will assist us in identifying the kind of oscillations our model

should include are ℓ and Ptime. In our illustrations, we have used ℓ ≈ 70− 100 to match the
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width of features in observed profiles, but these profiles apparently do not originate at the

surface of the neutron star. Rather, they are magnified versions from radiation emitted at

tangents to the diverging dipole field. We can estimate the magnification factor, which we

will call fν , by comparing the observed profile widths to the expected size of the Goldreich-

Julian emission cap at fixed period P1. At 1 second, for a pulsar with radius 10 km, the

latter is 1.7◦, while Rankin (1993a) measured 11.5◦ for the width of the outer annular

beam. Together, these yield a magnification of fν ∼ 7 at 1 GHz. Thus an apparent ℓ of 85

represents a true ℓ at the surface of ∼ 600. The dispersion relationship for g-modes (and

torsional modes) McDermott, et. al (1988) requires that Pℓ scale as 1/ℓ, so if ℓ = 600 has

a period of 30 ms, then we expect the ℓ = 2 mode with same radial overtone to have period

∼ 9 s. This limits considerably the kinds of oscillations we might consider.

McDermott, et. al (1988) gives periods near 9 s for low ℓ, low radial overtone (n ≈ 1),

core g-modes. However, these modes require very large energies to excite, and are trapped

in the core by the solid crust, yielding small amplitudes at the neutron star surface. An

alternative from McDermott, et. al (1988) are the g-modes that propagate in the ∼ 1m thick

electron-degenerate Coulomb liquid ocean overlying the solid crust in equilibrium neutron

star models (Richardson et al. 1982). The low n ocean g-modes have periods near 0.3 s,

rather than the 9 s we require, but the dispersion relation for g-modes gives longer periods

for higher overtone, so the eigenperiod should increase to 9 s for n ≈ 30. Therefore, ocean

g-modes of ℓ ≈ 600, and n ≈ 30 match the ℓ and Ptime our model requires. According to

McDermott, et. al (1988), these modes have lower energies than the core modes, and large

surface amplitudes. As in white dwarf stars, the material displacements in these oscillations

are primarily horizontal because of the high surface gravity.

The ocean g-modes also have an associated temperature variation that offers a way to

modulate the flow of charged particles from the pulsar surface at the pulsation eigenperiod.

If we accept the results of Jessner, Lesch, & Kunzl (2001), the electrons accelerated along

open field lines from a pulsar magnetic pole can be provided by thermal and field emission

from the neutron star surface, without the formation of a vacuum gap where sparks originate

in the Ruderman & Sutherland (1975) model. This result practically requires that subpulses

be related to a thermal variation at the neutron star surface, as g-modes provide. Thus

non-radial oscillations appear to satisfy one of the basic requirements of a pulsar emission

mechanism.

The other requirement for emission is that the liberated electrons be “bunched”. Their

acceleration away from the surface is naturally provided by the potential difference between

the neutron star pole and the circum-pulsar medium (Goldreich & Julian 1969), but conver-

sion of the particle stream to coherent radiation requires bunching of charges, whether the
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conversion is via an antenna or a maser mechanism (Melrose 1995). The radial structure

of n = 30 ocean g-modes consists of ∼ 3 cm zones of alternating pulsation phase. At any

instant, this will correspond to a periodic variation of the temperature and pressure with

depth. In electron degenerate plasma, the temperature is a property of the ions while the

pressure is a temperature insensitive property of the electrons. The displacements of an ion

fluid element generate a buoyant restoring force only through their electrical coupling to the

electrons, so the vertical pressure variation is associated with a vertically varying compo-

nent of the electric field. If this can modulate the flow of electrons, as in a klystron, then

the pulsations might also provide the mechanism for bunching the electrons emitted from

the surface. The observational clues necessary to clarify this question may lie in subpulse

polarization measurements, which are beyond the scope of this paper.

A problem with this picture comes from the work of Carroll et al. (1986), who added a

strong magnetic field to the pulsation calculations. Because of the high electrical conductivity

in the neutron star ocean, Carroll et al. (1986) treated the magnetic field as “frozen-in”,

and recalculated the pulsation frequencies for B = 1012 G in the MHD limit. He found

that the ocean g-modes become “magneto-gravity” modes with very short periods (< 1ms)

and a different dispersion relation. The solution to this conundrum is provided by the

conductivity calculations of Potekhin (1999). Potekhin finds electrical conductivities in

the direction transverse to a B = 1012 G field to be four to five orders of magnitude lower

than the 1019 s−1 Carroll et al. (1986) assumed. Thus the ohmic diffusion timescale for

displacements of 10 cm or smaller is
<
∼ 1 msec, shorter than subpulse periods. Not only does

this mean the calculations of Carroll et al. (1986) do not apply, it also means the magnetic

field can simultaneously provide the driving mechanism, the amplitude limiting mechanism,

and the mechanism for enforcing high radial overtones.

4.2. Mode Driving and Trapping

The high ℓ in our model suggests the concentration of pulsation driving energy into

a small surface patch, otherwise it would average away in the sum over multiple surface

zones with alternating phase. This concentration suggests consideration of the emission pole

itself as the site of driving. The torque exerted by braking from particle emission will be

concentrated at the open field lines, and communicated to the rest of the star by magnetic

and mechanical dissipation. If the magnetic field is coupled (even weakly) to the surface

and it displaces material laterally, the possibility for feedback and mode driving exists. For

example, suppose that torque on the open field lines results in a displacement of material on

the polar cap. The heating that results can increase particle emission, which increases the
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torque. Depending on the time delays, this feedback could drive oscillatory motion. Other

possibilities involving direct shaking of field lines (Boriakoff 1976) by displaced material are

also possible.

Whatever the driving mechanism, if there are g-mode pulsations in the neutron star

ocean, it is reasonable to propose that their propagation behavior changes at the boundary

between the emitting cap and the rest of the star, not only because the magnetic field changes

from an open to closed configuration, but because the surface boundary condition changes.

Thus the edge of the emitting cap constitutes a circular boundary that might “trap” pulsation

modes in the horizontal direction, analogous to the trapping by composition transition zones

in white dwarf stars (Winget, van Horn, & Hansen 1981). This “horizontal mode trapping”

could provide a connection between the size of the emitting cap and the size of pulsation

nodes by forcing surface nodal lines to lie at the circular boundary. If this connection is

maintained as P1 increases, it can explain why the core emission zone, as measured by

Rankin (1990) and others, follows a P
−1/2
1

relationship. In this section, we will explore

pulsation period evolution in the context of a horizontal trapping model.

4.3. The Period Evolution of the Pulsations

The pulsars measured to date seldom, if ever, have more than five components in their

average pulse (cf. Gangadhara & Gupta 2001, although their methodology is compromised

by pulsations) In our model, five components could result from horizontal mode trapping

at the third nodal line from the pulsation pole, and this is the geometry we depicted in

figure 2. We have already seen that parts of the profile can be “missing”, so the presence

of five components in the model does not necessarily mean that we see all five. If we now

force ℓ to have a value that places the third node at the emission boundary, we can write

a relationship for the period evolution of ℓ. From Goldreich & Julian (1969), the width of

the emission cap for a 10 km star follows:

Wcap = 1.7◦P
−1/2
1

, (5)

and the width of third nodal line scales as 1/ℓ, reaching 1.7◦ for ℓ ≈ 600. So we may write:

W3 = 1.7◦
600

ℓ
. (6)

Enforcing horizontal mode trapping requires Wcap = W3 so,
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ℓ = 600P
1/2
1

, (7)

as long as the trapping stays at the third nodal line. This equation is a mathematical

statement of the obvious requirement that as the emission cap shrinks during spin-down, the

ℓ of trapped pulsations must go up. Some of the other consequences for the pulsations are

not as obvious. For instance, from the dispersion relation for g-modes , Ptime changes as

∼ 1/ℓ if the radial overtone doesn’t change, so we expect Ptime to decrease as P1 increases.

However, the important ratio Ptime/Pnode becomes:

Ptime

Pnode

∝
sin(α)

P1

(8)

So as P1 increases (or the spin and magnetic axes align), Ptime shrinks with respect to

Pnode . This favors the appearance of narrow drifting subpulses in the long period pulsars,

as observed. The impact parameter β, which we have ignored, may also play a role, since

the decreasing emission cap size makes it less likely that our sightline intersects the central

component (see figure 2), and Pnode increases for such sightlines.

Finally we consider the possibility that the horizontal trapping may apply to the second

nodal line instead of the third, requiring a lower value of ℓ for the same P1. In this case,

the central component will have a larger angular size at the same P1 than for third node

trapping. This would be observed as a bimodal distribution of core components, and there is

evidence in Rankin (1990) for just such an effect (see her figure 1). Because Rankin (1990)

assumed that the distribution of core sizes is solely an effect of α, the bimodality appears as

an excess of pulsars at α = 35◦. While our explanation would eliminate this puzzling excess,

it raises two problems of its own. First, we would expect some pulsars with interpulses in

the distribution with larger core sizes, and Rankin (1990) finds none. Second, figure 1 of

Rankin (1990) shows the beam sizes for pulsars with single components, not five, meaning

all the pulsars in this sample have pulse components within their emission caps that do not

appear in the mean profiles.

5. CONCLUSIONS

Whether or not the foregoing discussion has revealed anything about pulsars, it has cer-

tainly demonstrated Clemens (1883) maxim that we can get “wholesale returns of conjecture

out of such a trifling investment of fact.” Nevertheless, the fact remains: pulsar beams show

subpulse phase reversals at the longitude-stationary boundaries separating individual pulse

components. We have shown that these changes are comprehensible in the context of an
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oblique pulsator model incorporating non-radial pulsations of high degree ℓ. The important

features of our model are: non-radial oscillations aligned to and symmetric about the pulsar

magnetic axis; surface displacements that follow a spherical harmonic distribution; radio

emission that follows the displacements but is never negative; pulsation modes of sufficiently

high ℓ that nodal lines often appear in the pulse window; and pulsation frequencies that

remain coherent over many pulsar spin periods. Variations on this basic model might include

multiple pulsation modes with non-zero azimuthal orders, pulsations that are distorted, in

reality or in appearance, by non-dipole fields, and modes that interact either through mode

coupling or a non-linear emission mechanism.

Our model qualitatively reproduces the mean shapes of pulsar beams and the radio

frequency dependent behavior of subpulses with a minimum of free parameters. In the most

basic form of the model these are α, β, Ptime, ℓ, and P1. Our model also dictates specific

requirements that can be tested quantitatively using new or archival data. We have embarked

on a program to conduct such tests and we encourage others to do likewise. If the model

survives these tests, then we will have the opportunity to measure fundamental properties of

matter in a domain not accessible to laboratory experiments. The first challenge will be to

determine the site of the pulsations, and then to connect measured eigenfrequencies with the

eigenmodes of a structural model. Given the number of modes in the pulsation spectrum at

large ℓ, this may be a daunting task, but even rough identification will provide limits on the

thermal, electrical, and mechanical properties of constituents of a neutron star, the densest

objects accessible to direct observational scrutiny.
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A. MODULATION INDUCED DRIFTBAND CURVATURE

The purpose of this appendix is to calculate, in approximate fashion, the apparent

change in subpulse drift between nodal lines caused by the amplitude modulation of strictly

periodic time-like pulses. We will approximate the longitude-dependent modulation between

two nodes as a cosine function, which is very similar to the envelope between two nodes of a

spherical harmonic for sightlines with β = 0. Thus we can write a more manageable version
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of equation 1:

ξ = cos(ωΦt) cos(ωtt+ φ), (A1)

where ωΦ = 2π
Pnode

.

To find the times of maxima (and minima), we take the derivative and set it to zero,

yielding:

−ωΦ

ωt + φ
=

tan(ωtt + φ)

tan(ωΦt)
. (A2)

In figure 9 we have plotted the locus of the times-of-maxima for ωΦt between −90 and

90 degrees, simulating the range between nodal lines, for a variety of cases. The lines in

these plots are analogous to subpulse driftbands, because they show how the maxima (and

minima) of time-like pulses vary with longitude. For the case where Ptime ≈ Pnode, we expect

no driftband curvature. When Ptime < Pnode, we expect slower drift near nodal lines (right

hand panels), and vice versa.

We note that for β 6= 0 sightlines that graze along a nodal line in the center of the pulse

window, the driftband curvature can be the reverse of the cases plotted here, i.e. narrow

subpulses will drift more slowly near the center of the profile. This can explain the driftband

curvature measured for PSR0031-07 by Krishnamohan (1980), and discussed by Wright

(1981). The more important conclusion is that when nodal lines are present, P2 can vary

with longitude, even though the underlying clock is absolutely stable.
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