340 research outputs found

    Developement of real time diagnostics and feedback algorithms for JET in view of the next step

    Full text link
    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model–based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Observation of confined current ribbon in JET plasmas

    Get PDF
    we report the identification of a localised current structure inside the JET plasma. It is a field aligned closed helical ribbon, carrying current in the same direction as the background current profile (co-current), rotating toroidally with the ion velocity (co-rotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first ELM.Comment: 10 pages, 6 figure

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    The Italian Draft Law on the \u2018Provisions Concerning the Safeguarding of the Intangible Cultural Heritage\u2019

    Get PDF
    Intangible cultural heritage in Italy is still in need of a unified approach, capable of providing reliable criteria for identifying its assets and for indicating timescales and means by which they should be safeguarded. In the continued absence of up-to-date, ad hoc state legislation (since the content of those laws which do implement international Conventions is too generic in nature to be sufficiently effective), the Regions have proceeded to act in a somewhat scattered manner, giving rise to an extremely fragmented and very disorderly regulatory framework. The draft law N. 4486, "Provisions Concerning the Safeguarding of the Intangible Cultural Heritage", presented on 12th May 2017 at the Chamber of Deputies of the Italian Republic - as the result of the work of an interdisciplinary and inter-university research team coordinated by Marco Giampieretti, who has drafted the final text with the collaboration of Simona Pinton - seeks to fill the serious void that exists in Italian legal system by aligning it to the principles of international and European law, by redirecting the relevant State and Regional legislation, and by satisfying the fundamental requirements of the national community

    Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System

    Get PDF
    The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties

    Controlling the risks of nano-enabled products through the life cycle: The case of nano copper oxide paint for wood protection and nano-pigments used in the automotive industry

    Get PDF
    The widespread use of engineered nanomaterials (ENMs) in consumer products and the overwhelming uncertainties in their ecological and human health risks have raised concerns regarding their safety among industries and regulators. There has been an ongoing debate over the past few decades on ways to overcome the challenges in assessing and mitigating nano-related risks, which has reached a phase of general consensus that nanotechnology innovation should be accompanied by the application of the precautionary principle and best practice risk management, even if the risk assessment uncertainties are large. We propose a quantitative methodology for selecting the optimal risk control strategy based on information about human health and ecological risks, efficacy of risk mitigation measures, cost and other contextual factors. The risk control (RC) methodology was developed in the European FP7 research project SUN and successfully demonstrated in two case studies involving real industrial nano-enabled products (NEPs): nano-scale copper oxide (CuO) and basic copper carbonate (Cu₂(OH)₂CO₃) used as antimicrobial and antifungal coatings and impregnations for the preservation of treated wood, and two nanoscale pigments used for colouring plastic automotive parts (i.e. red organic pigment and carbon black). The application of RC for human health risks showed that although nano-related risks could easily be controlled in automotive plastics case study with modifications in production technology or specific type of engineering controls, nano-related risks due to sanding and sawing copper oxide painted wood were non-acceptable in the use lifecycle stage and would need the identification of a more effective risk control strategy

    H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET

    No full text
    Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width Delta/a proportional to rho*(1/2) to rho* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the E x B velocity. In the multidevice experiment where rho* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with rho* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to Delta(psi) proportional to beta p(1/2). All three devices show a scaling of the pedestal width in normalised poloidal flux as Delta(psi) proportional to beta p(1/2), as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.</p
    corecore