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A B S T R A C T   

In the context of the EU GRACIOUS project, we propose a novel procedure for similarity assessment and grouping 
of nanomaterials. This methodology is based on the (1) Arsinh transformation function for scalar properties, (2) 
full curve shape comparison by application of a modified Kolmogorov–Smirnov metric for bivariate properties, 
(3) Ordered Weighted Average (OWA) aggregation-based grouping distance, and (4) hierarchical clustering. The 
approach allows for grouping of nanomaterials that is not affected by the dataset, so that group membership will 
not change when new candidates are included in the set of assessed materials. To facilitate the application of the 
proposed methodology, a software script was developed by using the R programming language which is currently 
under migration to a web tool. The presented approach was tested against a dataset, derived from literature 
review, related to immobilization of Daphnia magna and reporting information on several nanomaterials and 
properties.   

1. Introduction 

The large diversity of nanoforms (NFs) used in nano-enabled prod-
ucts has made their case-by-case safety assessment very demanding in 
terms of resources. It has been widely accepted by regulators, industries, 
and scientists that the implementation of robust approaches for simi-
larity assessment as a basis for grouping could help to optimise testing 
costs and the use of experimental animals (ECHA, 2019a, 2019b). The 
grouping of similar NFs can enable read across of essential information 
for both safe by design and regulatory risk assessment purposes. To 
facilitate this, the European Commission funded Horizon 2020 
GRACIOUS project (https://www.h2020gracious.eu), which has devel-
oped a framework to guide stakeholders from industry, consultancies 
and regulation in the process of grouping NFs (Stone et al., 2020). 

To support the grouping, GRACIOUS has also proposed an array of 
methods to assess similarity between NFs in terms of intrinsic and 
extrinsic physicochemical characteristics as well as toxicity, either via a 
pairwise analysis conducted property-by-property, or by assessing all 
relevant properties and hazard endpoints simultaneously via multidi-
mensional analysis (Jeliazkova et al., 2021). Such methods are based for 
example on an x-fold comparison (Janer et al., 2021), Euclidean 

distance, Bayesian logic (Tsiliki et al., 2021) or clustering methods 
(Jeliazkova et al., 2021). 

These statistical approaches apply different algorithms to compare 
NFs, but what unifies them is that in all of them, the grouping is relative 
to the dataset. This means that changes to the dataset due to adding 
information on new materials might theoretically cause some of the NFs 
in the initial dataset to change their group membership. This can have 
important implications on any read-across and/or risk assessment 
studies already performed and on the respective risk management and/ 
or regulatory decisions made. The likelihood that this theoretical pos-
sibility becomes real is particularly large for sectors where new NFs of 
the same of similar substances are continuously being developed (e.g. 
organic and inorganic pigments, silicas, carbon nanotubes), and new 
health and safety information that is relevant to include in grouping 
datasets is constantly emerging. 

To address this issue, the objective of this paper is to propose a 
methodology for assessment of similarity between NFs, which enables 
grouping of the NFs that is not affected by the dataset. This will guar-
antee that the group membership of the NFs will not change when new 
candidates are included in the set of assessed materials. This approach is 
based on a combination of the (1) Arsinh transformation function for 
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scalar properties, (2) full curve shape comparison by application of a 
modified Kolmogorov–Smirnov metric for bivariate properties, (3) Or-
dered Weighted Average (OWA) aggregation-based grouping distance, 
and (4) hierarchical clustering. Specifically, the methodology first ap-
plies the Arsinh transformation to the distance between two NFs, and 
then rescales the result to the Arsinh of a biologically relevant threshold, 
such as a multiple of the positive control value for the same property. 
This metric distance-based similarity allows the final aggregated dis-
tance between NFs to not be affected by the dataset, preserving sym-
metry and triangular inequality, leading to groups which do not change 
if new members are included in the assessment. The rescaled similarity 
matrices are utilized for grouping by applying agglomerative hierar-
chical clustering in a multidimensional space. To evaluate the multidi-
mensional distance, OWA aggregation (Yager and Kacprzyk, 1997) is 
applied, where the highest distances among all dimensions are aggre-
gated as the overall NF distance from other NFs. 

To facilitate the application of the proposed methodology a software 
script was developed by using the R programming language. The script is 
currently under migration into a web application. The presented 
approach was tested against a dataset, derived from a literature review. 
The dataset is related to immobilization of Daphnia magna and includes 
information on several nanomaterials and properties. 

2. Methods 

The aim of the proposed methodology is to perform grouping of NFs 
considering all the available data such as physicochemical and toxico-
logical information. The idea is that by integrating the different data 
types and applying specific transformations to each of them it is possible 
to achieve threshold-based grouping that is not affected by the dataset. 

The main feature of the proposed methodology is the application of 
metric distance-based similarity among the different considered pa-
rameters so that the final aggregated distance between NFs: i) would not 
be affected by the dataset: ii) preserves symmetry; and iii) ensures 
triangular inequality. This leads to groups which do not change if new 
members are included in the assessment. 

Given a set of candidate NFs characterized by several intrinsic and 
extrinsic properties, the methodology elicits possible groups of ‘suffi-
ciently similar’ NFs. To this end the following phases are foreseen:  

- Both scalar and dose response data is transformed and scaled to 
become comparable.  

- Single properties’ distances are calculated with specific methods for 
scalar and dose response data.  

- Pairwise NFs distance is calculated for all possible pairs of candidates 
by considering all properties.  

- Hierarchical clustering is performed using the pairwise distances. 

To aid the application of the proposed methodology, a software 
script programmed in the R programming language was developed. The 
script reads csv input tables containing properties data for each candi-
date NF, performs transformation and scaling, evaluates pairwise dis-
tances, and applies hierarchical clustering. Finally, it provides several 
charts and intermediate results for all performed calculations while 
suggesting the final inferred NFs groups. Moreover, a development effort 
is currently undergoing to migrate the Script into an online tool. 

2.1. Data transformation and scaling 

The first step of the procedure involves initial data treatment. Only 
scalar data is transformed to become manageable, reduce the impact of 
errors and make the different properties comparable. 

The proposed transformation is the Arsinh function (i.e., Inverse 
hyperbolic sine, Fig. 1). The Arsinh function has similar characteristics 
to the logarithm function (upon which it is based) but presents several 
comparative advantages: it is continuous and defined over the whole 
real numbers’ domain (including negative numbers), it is always non- 
negative for positive real numbers (including the [0,1] portion) and is 
less steep than the logarithm function for small values in (0,1) which 
helps to better distinguish upon small numbers. 

After being transformed, data are scaled with the aim of normalizing 
the distances upon different properties values. This allows for a 

Fig. 1. Arsinh (red line) vs ln (blue dash) comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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meaningful integration when calculating a multidimensional distance 
before clustering (see 2.4). One of the aims of the proposed methodology 
is its ability of maintaining the same groups even if new members are 
included in the study, i.e. being an absolute rather than relative 
assessment. To preserve this feature, scaling cannot be based on statis-
tical descriptors as usually done in such situations (e.g. by evaluating the 
standardized values). Instead, a specific threshold is set for each prop-
erty as scaling ratio. This means that the method provides absolute re-
sults given that scaling thresholds are not changed between compared 
applications. Such a threshold should be property specific, although data 
agnostic, and should represent the biological distance sufficient to 
define two items as not similar. In the developed R script such threshold 
has been established empirically from the GRACIOUS data as a multiple 
of negative control for several widely used properties. Such negative 
controls are derived from benchmark or reference materials used in 
GRACIOUS, all of which are well-characterized nanomaterials, e.g. from 
the JRC repository. Such selection respects the absolute result prereq-
uisite, given that the negative control is kept fixed for the same property 
in different assessments. 

2.2. Evaluation of distances of single properties 

To evaluate the distance of scalar properties the simple single 
dimension Euclidean distance is used (i.e. |x1 − x2|) whereas for dose 
response (i.e. bivariate) data the methodology is based on full dose 
response comparison. 

The basic idea is that considering the entire dose response data points 
can help to better assess similarity than only considering a single 
element of the dose response relationship such as the point of departure 
(e.g., BMDL, NOAEL) or another reference dose (e.g. LC50). This is 
because different NFs could have similar NOAEL or LC50s, but very 
different slopes and shapes of their overall dose response curves. 

Measured concentrations of experiments conducted for different NFs 
are in general not coincident both in numerosity and value. This implies 
that measuring effects distances upon the empirical measured data 
would in general be unfeasible as it would not be possible to associate 
the different responses to be compared to a representative concentra-
tion. Because of this, the proposed methodology is not based upon the 
empirical data points but rather their statistically fitted curves. To fit the 
curves the PROAST model (Slob, 2002) from RIVM is applied. PROAST is 
suitable for statistically sampling both in vitro and in-vivo dose-response 
data as it includes several kinds of fitting distributions. 

Once all curves are fitted, their distance is assessed by the Jensen–-
Shannon distance. The Jensen–Shannon distance is defined as the square 
root of the Jensen–Shannon divergence (Lin, 1991) and has the advan-
tage, upon the latter, of being a proper metric (i.e. a distance function 
that respects identity, symmetry and triangular inequality). The Jen-
sen–Shannon divergence is a well-known method to measure similarity 
between two probability distributions, it is based on the Kullback–Lei-
bler divergence (Kullback and Leibler, 1951), with the enhancements of 
being symmetric and always having a finite value. 

Once pairwise distances between all NFs have been evaluated both 
for scalar and dose response data, the result is a three-dimensional dis-
tance matrix reporting distance between all NFs among all properties 
which can be used in any multidimensional distances-based similarity 
algorithm. 

2.3. Evaluation of a single distance value integrating all properties’ 
distances 

To apply any clustering technique, it first is necessary to integrate 
distances among all single properties into an overall distance value, 
generating a bidimensional distance matrix of pairwise NF distances. 
Several distance metrics are possible candidates for this step of the 
process, e.g. Euclidean distance, Manhattan distance, etc. All the 
aforementioned distances are based on topographical concepts of 

physical distance between objects. As in this setting we are assessing 
dissimilarity rather than distance, we decided to apply an aggregation 
function coming from Multi Criteria Decision Analysis (MCDA) (Zabeo 
et al., 2011; Giove et al., 2009) and more specifically from its Multi 
Attribute Value Theory (MAVT) (Angelis and Kanavos, 2017; D. R. 
Hristozov et al., 2014) branch. While both MCDA and MAVT aim at 
ranking different alternatives based on selected characteristics, the basic 
underlying aggregation functions used in MAVT are deemed to properly 
resemble the kind of dissimilarity metric which fits the NF grouping 
issue. More specifically, the proposed methodology makes use of the 
Ordered Weighted Average (OWA) aggregation operator (D. Hristozov 
et al., 2016; Ahn and Yager, 2014) which is a generalization of the 
minimum, average and maximum operators which are also the foun-
dation of the aforementioned topographical metrics (e.g. Euclidean 
distance is based on the average aggregation function). 

The OWA operator is based on a set of weights which are used as 
operational parameters to adapt the general OWA formula to a specific 
implementation, in fact the OWA operator of dimension n is a mapping 
function characterized by a weights vector w = (w1,…,wn), where wi ∈

[0,1] and 
∑

i=1
nwi = 1, and defined as: 

OWA(x1,…, xn) =
∑n

i=1
wi⋅bi  

where bi is the ith largest element in the (x1,…,xn) vector, so that b1 ≥ b2 
≥ … ≥ bn. 

Given that for a generic multidimensional grouping problem the 
number of properties to aggregate in a single distance score should al-
ways be greater or equal to three, the proposed generic weights vector is 
w = (0.7,0.2,0.1,0…) where all weights from fourth to nth (if n > 3) are 
set to 0. The proposed weights were defined empirically following the 
idea that similarity should not be based on compensatory aggregation 
but rather that a relevant distance in just a few properties should 
determine group separation. 

2.4. Clustering and definition of similar groups 

The final step of the proposed grouping methodology consists in 
applying agglomerative hierarchical clustering (Ah-Pine, 2018) to the 
pairwise distance matrix obtained in the previous step. The agglomer-
ative clustering process starts by having each element (i.e. each NF) in a 
separate cluster, then, utilizing the complete-linkage protocol which 
combines two clusters basing on the farthest pair of their elements, 
clusters are joined together hierarchically, forming a tree structure 
usually visualized as a dendrogram. The complete-linkage protocol was 
selected so that the cutting threshold of 1 can successively be used to 
establish final groups while maintaining the immutability of groups 
when new members are included in the assessment. 

The obtained tree of growing clusters is finally used to suggest 
possible groups of sufficiently similar NFs. As the selected rescaling 
threshold (see 2.1) was based on significant biological difference, it is 
now possible to use 1 as cutting threshold for the group’s boundaries, so 
that all clusters more than a unit apart represent sufficiently dissimilar 
groups. This can easily be represented in a dendrogram where a hori-
zontal line at distance 1 is drawn. 

3. Results 

The presented methodology has been tested by its application to a 
literature review-based dataset related to immobilization of Daphnia 
magna exposed to five different NFs of Nano Copper Oxide. The dataset 
contains immobilization dose-response data. Two different parameters 
were used for multidimensional similarity: Primary size diameter (scalar 
number) measured by Dynamic Light Scattering and immobilization 
(dose-response dataset). The complete dataset is available in the sup-
plementary material, the five assessed NFs are derived from the 
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following papers:  

• Kim_40: (Kim et al., 2017) 40 nm data  
• Santos-Rasera_40: (Santos-Rasera et al., 2019) 40 nm data  
• Santos-Rasera_80: (Santos-Rasera et al., 2019) 80 nm data  
• Seo_40: (Seo et al., 2014) 40 nm data  
• Sovova_50: (Sovova et al., 2009) 50 nm data 

The results presented below should be considered as a proof-of- 
concept aimed at testing the proposed methodology on real data. This 
should therefore not be considered a complete study providing reliable 
regulatory level results as this is out of the scope of this manuscript. 

3.1. Data transformation and scaling 

Transformation and scaling are only applied to scalar properties as 
dose-response distances are managed separately. In this application size 
data has been transformed, by Arsinh, and scaled. The scaling threshold 
was established empirically from the GRACIOUS data as a multiple of 
negative control and is the proposed default scaling factor for size in 
general applications. 

3.2. Evaluation of single properties’ distances 

Distances among properties are calculated through different pro-
cedures according to their type, while for scalar properties Euclidean 
distance is used. For dose-response data the process involves curve 
fitting and distance evaluation as explained before. 

In Fig. 2 the original unfitted data is presented while the corre-
sponding fitted curves are in Fig. 3. 

The fitted curves all present similar shapes even though some notable 
differences are present. All fitted curves are based on the Exponential 
function family but, while Kim_40 is fitted by a 4 parameters’ version, all 
others are fitted by the complete version with 5 parameters. Moreover, 
among the 5 parameters fitted NFs, Santos-Rasera_40 is the one with 
much different parameters’ values compared to the others (see SI.2). 

Distance between the fitted lines has been calculated by first 
rescaling all the curves to the [0,1] domain using overall minimum and 
maximum values as boundaries and then by square rooting their Jen-
sen–Shannon divergence. The obtained distances both for the Size scalar 
property and Immobilization dose response property are reported in 
Fig. 4 below. It is already visible that Santos-Rasera_80 presents higher 
distances in general. 

3.3. Evaluation of a single distance value integrating all properties’ 
distances 

The OWA aggregation function with default weights was applied to 
aggregate the two previously obtained single property distances into an 
overall distance matrix presented in Fig. 5. As previously deemed Santos- 
Rasera_80 still presents the highest distances overall. 

3.4. Clustering and definition of similar groups 

The final step of assessment involves the application of standard 
hierarchical clustering based on the OWA weights generated in the 
previous step. The result of the clustering process is the dendrogram 
presented in Fig. 6. As explained before, different groups can be formed 
by cutting the obtained dendrogram at distance equal to 1, which in this 
example generates two groups, one formed by Santos-Rasera_80 alone 
and the other containing all other NFs. 

4. Discussion 

In this manuscript we proposed a novel procedure for similarity 
assessment and grouping of NFs. The proposed methodology accom-
plishes the main objective of this work, by providing a static similarity 
and grouping approach which does not change as new NFs are included 
in the assessment. The main limitation of this approach is related to the 
need of scaling thresholds for the different scalar properties. These 
thresholds are used to rescale different properties, each with its own unit 
of measure, to a generic scale where a distance of one unit represents 
biological relevance. If such thresholds are maintained fixed among 
several applications of the proposed assessment, then the obtained 
groups will be coherent. This means that the same NF will always stay in 
the same group even if other NFs are included in the assessment. To 
overcome this issue, default thresholds for the most common properties 
were included in the developed R script, as empirically derived from 
negative control substances of GRACIOUS experiments. The script also 
allows using more specific thresholds set by the user. 

To confirm the strength of the methodology, it was applied to liter-
ature dose response data related to immobilization for different Copper 
Oxide based NFs. The assessed NFs were characterized by two proper-
ties, size diameter, a scalar number and percentage dose response curves 
for immobilization of Daphnia magna. The original data was scaled and 
transformed to move from the original unit of measure, different for 
each property, to comparable quantities related to biological relevance 
so that a distance of one unit has the same meaning for all the different 
properties. Transformed data was then aggregated into a single distance 
used to create groups of sufficiently similar NFs according to all the 
assessed properties. The study showed how Santos-Rasera_80 should 
constitute a group per se while all other NFs should be grouped together 
as having an aggregated distance above one. The procedure correctly 
separated the NFs with higher differences in the values of both param-
eters in a transparent procedure. 

These results are in line with those from other similarity and 
grouping methods applied in the GRACIOUS project. However, it is 
important to note that these results should only be considered as a proof- 
of-concept aimed at testing the presented approach and the R script with 
real data. The results of the study presented here should therefore not be 
considered as providing regulatory level similarity assessment results. 

Several future enhancements are foreseen for the proposed meth-
odology and the R script. This will allow to take uncertainty into 
consideration and mitigate bias related to the comparison of fitted dose- 
response curves generated from original data points with non- Fig. 2. Original dose response data.  

Fig. 3. Dose response fitted curves using the PROAST software.  
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intersecting dose ranges. 

5. Conclusions 

We proposed an Arsinh and OWA based methodology for similarity 
assessment and grouping which preserves groups even if new NFs are 
included in the assessment. The approach involves four stages: (1) data 
transformation and scaling based on the Arsinh function for scalar 
properties; (2) evaluation of single properties’ distance by Kolmogor-
ov–Smirnov metric based full curve shape comparison for bivariate 
properties; (3) Evaluation of a single integrated distance using Ordered 
Weighted Average (OWA) aggregation; and (4) clustering and definition 
of similar groups with hierarchical clustering. To facilitate the applica-
tion of this methodology, an R script was developed, which is currently 
undergoing migration into a web-based tool. 

Positive aspects of the proposed approach are mainly related to its 
absolute grouping (as opposed to relative grouping) where group 
membership is not changing when new candidates are included in the 
set of assessed materials. This feature is highly relevant for nano-
materials as in practice there are often many existing and emerging 
nanoforms of the same substance (e.g., pigments) that may not be 
included in the initial dataset but may be added to the grouping as they 
are actually developed and information for them becomes available. On 
the other hand, the proposed method requires parameter specific 

1
Fig. 4. Pairwise distances for Size distribution and Dose response, each cell shows the pairwise distance among NFs according to Size (left) and immobilization dose 
response (right. 

Fig. 5. Aggregated distance evaluation through the OWA operator with default 
weights, each cell shows the pairwise distance among NFs according to dis-
tances calculated through the OWA operator which aggregates the size and 
immobilization distances calculated in the previous step. 

Fig. 6. Final clustering dendrogram generating two groups expressed by red 
and green lines. Each cluster (represented by a branch) is vertically positioned 
corresponding to the distance between its elements, Santos-Rasera_80 forms a 
cluster of its own and is separated from the cluster of all other NFs as its dis-
tance is above one, as explained in 2.4. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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thresholds which could be difficult to establish for some parameters. To 
demonstrate the methodology and the R script, they were tested in a 
proof-of-concept exercise against a literature-based dataset for immo-
bilization. The method was also validated against other methods in 
(Jeliazkova et al., 2021) in this same issue, results were also consistent 
with conclusions from other methods applied to the same data in the 
GRACIOUS project (Tsiliki et al., 2021). This confirmed the validity and 
the soundness of the proposed approach. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The GRACIOUS project has received funding from the European 
Union’s Horizon 2020 Research and Innovation Programme under grant 
agreement No 760840. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.impact.2021.100370. 

References 

Ahn, Byeong Seok, Yager, Ronald R., 2014. The use of ordered weighted averaging 
method for decision making under uncertainty. Int. Trans. Oper. Res. 21 (2), 
247–262. https://doi.org/10.1111/itor.12042. 

Ah-Pine, Julien, 2018. An Effcient and effective generic agglomerative hierarchical 
clustering approach. J. Mach. Learn. Res. 19. 

Angelis, A., Kanavos, P., 2017. Multiple criteria decision analysis (MCDA) for evaluating 
new medicines in health technology assessment and beyond: the advance value 
framework. Soc. Sci. Med. https://doi.org/10.1016/j.socscimed.2017.06.024. 

ECHA, 2019a. Appendix for Nanoforms Applicable to the Guidance on Registration and 
Substance Identification. 

ECHA, 2019b. Guidance on Information Requirements and Chemical Safety Assessment. 
Appendix R.6–1 for Nanoforms Applicable to the Guidance on QSARs and Grouping 
of Chemicals. 

Giove, S., Brancia, A., Satterstrom, F.K., Linkov, I., 2009. Decision Support Systems for 
Risk Based Management of Contaminated Sites. Springer Verlag, New York.  

Hristozov, D., Zabeo, A., Alstrup Jensen, K., Gottardo, S., Isigonis, P., Maccalman, L., 
Critto, A., Marcomini, A., 2016. Demonstration of a modelling-based multi-criteria 

decision analysis procedure for prioritisation of occupational risks from 
manufactured nanomaterials. Nanotoxicology 5390 (July), 1–14. https://doi.org/ 
10.3109/17435390.2016.1144827. 

Hristozov, Danail R., Gottardo, Stefania, Cinelli, Marco, Isigonis, Panagiotis, Zabeo, Alex, 
Critto, Andrea, Van Tongeren, Martie, Tran, Lang, Marcomini, Antonio, 2014. 
Application of a quantitative weight of evidence approach for ranking and 
prioritising occupational exposure scenarios for titanium dioxide and carbon 
nanomaterials. Nanotoxicology 8 (2), 117–131. https://doi.org/10.3109/ 
17435390.2012.760013. 

Janer, Gemma, Landsiedel, Robert, Wohlleben, Wendel, 2021. Rationale and decision 
rules behind the ECETOC NanoApp to support registration of sets of similar 
nanoforms within REACH. Nanotoxicology 15 (2). https://doi.org/10.1080/ 
17435390.2020.1842933. 

Jeliazkova, Nina, Bleeker, Eric, Cross, Richard, Haase, Andrea, Janer, Gemma, 
Peijnenburg, Willie, Pink, Mario, et al., 2021. How Can we Justify Grouping of 
Nanoforms for Hazard Assessment? Concepts and Tools to Quantify Similarity. 
NanoImpact. https://doi.org/10.1016/J.IMPACT.2021.100366. 

Kim, Soyoun, Samanta, Palas, Yoo, Jisu, Kim, Woo Keun, Jung, Jinho, 2017. Time- 
dependent toxicity responses in Daphnia Magna exposed to CuO and ZnO 
nanoparticles. Bull. Environ. Contam. Toxicol. 98 (4) https://doi.org/10.1007/ 
s00128-016-2022-1. 

Kullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Stat. 22 (1), 
79–86. https://doi.org/10.1214/aoms/1177729694. 

Lin, Jianhua, 1991. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. 
Theory 37 (1), 145–151. https://doi.org/10.1109/18.61115. 

Santos-Rasera, Joyce Ribeiro, Neto, Analder Sant’Anna, Monteiro, Regina Teresa Rosim, 
Van Gestel, Cornelis A.M., De Carvalho, Hudson Wallace Pereira, 2019. Toxicity, 
bioaccumulation and biotransformation of cu oxide nanoparticles in: Daphnia 
Magna. Environmental Science: Nano 6 (9). https://doi.org/10.1039/c9en00280d. 

Seo, Jaehwan, Kim, Soyoun, Choi, Seona, Kwon, Dongwook, Yoon, Tae Hyun, Kim, Woo 
Keun, Park, June Woo, Jung, Jinho, 2014. Effects of physiochemical properties of 
test media on nanoparticle toxicity to Daphnia Magna Straus. Bull. Environ. Contam. 
Toxicol. 93 (3) https://doi.org/10.1007/s00128-014-1337-z. 

Slob, Wout, 2002. Dose-response modeling of continuous endpoints. Toxicol. Sci. 66 (2), 
298–312. http://www.ncbi.nlm.nih.gov/pubmed/11896297. 
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