763 research outputs found

    Europese miljoenen voor stamcelonderzoek bij planten

    Get PDF
    Onderzoek levert fundamentele kennis over plantengroei, relevant voor de landbouw

    Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy

    Get PDF
    The branched vs. isoprenoid tetraether (BIT) index is based on the relative abundance of branched tetraether lipids (brGDGTs) and the isoprenoidal GDGT crenarchaeol. In Lake Challa sediments the BIT index has been applied as a proxy for local monsoon precipitation on the assumption that the primary source of brGDGTs is soil washed in from the lake's catchment. Since then, microbial production within the water column has been identified as the primary source of brGDGTs in Lake Challa sediments, meaning that either an alternative mechanism links BIT index variation with rainfall or that the proxy's application must be reconsidered. We investigated GDGT concentrations and BIT index variation in Lake Challa sediments at a decadal resolution over the past 2200 years, in combination with GDGT time-series data from 45 monthly sediment-trap samples and a chronosequence of profundal surface sediments.Our 2200-year geochemical record reveals high-frequency variability in GDGT concentrations, and therefore in the BIT index, superimposed on distinct lower-frequency fluctuations at multi-decadal to century timescales. These changes in BIT index are correlated with changes in the concentration of crenarchaeol but not with those of the brGDGTs. A clue for understanding the indirect link between rainfall and crenarchaeol concentration (and thus thaumarchaeotal abundance) was provided by the observation that surface sediments collected in January 2010 show a distinct shift in GDGT composition relative to sediments collected in August 2007. This shift is associated with increased bulk flux of settling mineral particles with high Ti?/?Al ratios during March–April 2008, reflecting an event of unusually high detrital input to Lake Challa concurrent with intense precipitation at the onset of the principal rain season that year. Although brGDGT distributions in the settling material are initially unaffected, this soil-erosion event is succeeded by a massive dry-season diatom bloom in July–September 2008 and a concurrent increase in the flux of GDGT-0. Complete absence of crenarchaeol in settling particles during the austral summer following this bloom indicates that no Thaumarchaeota bloom developed at that time. We suggest that increased nutrient availability, derived from the eroded soil washed into the lake, caused the massive bloom of diatoms and that the higher concentrations of ammonium (formed from breakdown of this algal matter) resulted in a replacement of nitrifying Thaumarchaeota, which in typical years prosper during the austral summer, by nitrifying bacteria. The decomposing dead diatoms passing through the suboxic zone of the water column probably also formed a substrate for GDGT-0-producing archaea. Hence, through a cascade of events, intensive rainfall affects thaumarchaeotal abundance, resulting in high BIT index values.Decade-scale BIT index fluctuations in Lake Challa sediments exactly match the timing of three known episodes of prolonged regional drought within the past 250 years. Additionally, the principal trends of inferred rainfall variability over the past two millennia are consistent with the hydroclimatic history of equatorial East Africa, as has been documented from other (but less well dated) regional lake records. We therefore propose that variation in GDGT production originating from the episodic recurrence of strong soil-erosion events, when integrated over (multi-)decadal and longer timescales, generates a stable positive relationship between the sedimentary BIT index and monsoon rainfall at Lake Challa. Application of this paleoprecipitation proxy at other sites requires ascertaining the local processes which affect the productivity of crenarchaeol by Thaumarchaeota and brGDGTs

    Дж. Х. Миллер как деконструктивист

    Get PDF
    Анализируется второй деконструктивистский этап литературно-критической деятельности Дж. Х. Миллера на материале 80-90-х годов. Цель данной статьи - показать новый деконструктивистский подход американского критика и выявить специфику его литературно-критического метода.The article deals with the second deconstructive period of J.H. Miller's literary theory and criticism (80-90-s' works). The purpose of the article is to define the new deconstructive approach of the American literary critic and specify his method

    Crystal size and oxygen segregation for polycrystalline GaN

    No full text
    The grain size for polycrystallineGaN,grown in low-temperature gallium-rich conditions, is shown to be correlated to the oxygen content of the films. Films with lower oxygen content were observed to have larger crystals with an increased tendency to a single-preferred crystal orientation.Elastic recoil detection analysis with heavy ions (i.e., 200 MeV ¹⁹⁷Au ions) was used to determine the composition of the GaN films grown for the study, including the hydrogen, carbon, gallium, nitrogen, and oxygen content. Atomic force microscopy and x-ray diffraction were used to study the sample morphology. From these measurements, the available surface area of the films was found to be sufficient for a significant proportion of the oxygen present in the films to segregate at the grain boundaries. This interpretation is consistent with earlier theoretical studies of the formation and segregation of the VGa-(ON)₃defect complex at dislocation sites in gallium-rich GaN. For this work, however, the defect complex is believed to segregate at the grain boundary of the polycrystallineGaN.The authors would like to acknowledge the support of a U. S. NICOP Contract, No. N00014-99-1-GO17 sponsored through the U. S. Office of Naval Research. One of the authors (K.S.A.B.) would like to further acknowledge the support of a Macquarie University Research Fellowship

    A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis

    Get PDF
    Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants. Note that there is a CORRIGENDUM to this article: http://eprints.whiterose.ac.uk/132306/ http://genesdev.cshlp.org/content/31/17/1821.ful

    A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

    Get PDF
    The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response

    Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities

    Get PDF
    Part of Focus on Dynamics of Arctic and Sub-Arctic Vegetation Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra ecosystems. Here, we (1) synthesize these findings, (2) present a conceptual framework that identifies mechanisms and constraints on shrub increase, (3) explore causes, feedbacks and implications of the increased shrub cover in tundra ecosystems, and (4) address potential lines of investigation for future research. Satellite observations from around the circumpolar Arctic, showing increased productivity, measured as changes in 'greenness', have coincided with a general rise in high-latitude air temperatures and have been partly attributed to increases in shrub cover. Studies indicate that warming temperatures, changes in snow cover, altered disturbance regimes as a result of permafrost thaw, tundra fires, and anthropogenic activities or changes in herbivory intensity are all contributing to observed changes in shrub abundance. A large-scale increase in shrub cover will change the structure of tundra ecosystems and alter energy fluxes, regional climate, soil–atmosphere exchange of water, carbon and nutrients, and ecological interactions between species. In order to project future rates of shrub expansion and understand the feedbacks to ecosystem and climate processes, future research should investigate the species or trait-specific responses of shrubs to climate change including: (1) the temperature sensitivity of shrub growth, (2) factors controlling the recruitment of new individuals, and (3) the relative influence of the positive and negative feedbacks involved in shrub expansion
    corecore