8,348 research outputs found
A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe
Environmental change alters ecosystem functioning and may put the provision of services to human at risk. This paper presents a spatially explicit and quantitative assessment of the corresponding vulnerability for Europe, using a new framework designed to answer multidisciplinary policy relevant questions about the vulnerability of the human-environment system to global change. Scenarios were constructed for a range of possible changes in socio-economic trends, land uses and climate. These scenarios were used as inputs in a range of ecosystem models in order to assess the response of ecosystem function as well as the changes in the services they provide. The framework was used to relate the impacts of changing ecosystem service provision for four sectors in relation to each other, and to combine them with a simple, but generic index for societal adaptive capacity. By allowing analysis of different sectors, regions and development pathways, the vulnerability assessment provides a basis for discussion between stakeholders and policymakers about sustainable management of Europe¿s natural resource
The influence of vision on susceptibility to acute motion sickness studied under quantifiable stimulus-response conditions
Twenty-four healthy men, 22 to 25 years of age, were exposed to stressful accelerations in a rotating room until acute mild motion sickness was elicited. Thirteen subjects in one group were exposed first with eyes open and later with eyes covered; the reverse order was used with the remaining eleven in the other group. The stressful accelerations were generated by requiring the subject to execute 120 standardized head movements at each 1-rpm increase in angular velocity until the desired endpoint was reached. When susceptibility to motion sickness with eyes open and covered is compared, 19 subjects were more susceptible with eyes open, three with eyes covered, and in the remaining two susceptibility was the same. The maximum difference in velocity between trial 1 and 2 was 7 rpm when susceptibility was greater with eyes open and 3 rpm when it was greater with eyes covered; the means, respectively, were 3.2 and 2.0 rpm. Among subjects manifesting greater susceptibility with eyes open than covered the group differences were small, indicating little or no adaptation effects. The findings are discussed mainly on the basis that vision may act also to decrease susceptibility under the stimulus conditions described
Chosen-ciphertext security from subset sum
We construct a public-key encryption (PKE) scheme whose
security is polynomial-time equivalent to the hardness of the Subset Sum problem. Our scheme achieves the standard notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) and can be used to encrypt messages of arbitrary polynomial length, improving upon a previous construction by Lyubashevsky, Palacio, and Segev (TCC 2010) which achieved only the weaker notion of semantic security (IND-CPA) and whose concrete security decreases with the length of the message being encrypted. At the core of our construction is a trapdoor technique which originates in the work of Micciancio and Peikert (Eurocrypt 2012
Quantum protocols for anonymous voting and surveying
We describe quantum protocols for voting and surveying. A key feature of our
schemes is the use of entangled states to ensure that the votes are anonymous
and to allow the votes to be tallied. The entanglement is distributed over
separated sites; the physical inaccessibility of any one site is sufficient to
guarantee the anonymity of the votes. The security of these protocols with
respect to various kinds of attack is discussed. We also discuss classical
schemes and show that our quantum voting protocol represents a N-fold reduction
in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio
The thermal and two-particle stress-energy must be ill-defined on the 2-d Misner space chronology horizon
We show that an analogue of the (four dimensional) image sum method can be
used to reproduce the results, due to Krasnikov, that for the model of a real
massless scalar field on the initial globally hyperbolic region IGH of
two-dimensional Misner space there exist two-particle and thermal Hadamard
states (built on the conformal vacuum) such that the (expectation value of the
renormalised) stress-energy tensor in these states vanishes on IGH. However, we
shall prove that the conclusions of a general theorem by Kay, Radzikowski and
Wald still apply for these states. That is, in any of these states, for any
point b on the Cauchy horizon and any neighbourhood N of b, there exists at
least one pair of non-null related points (x,x'), with x and x' in the
intersection of IGH with N, such that (a suitably differentiated form of) its
two-point function is singular. (We prove this by showing that the two-point
functions of these states share the same singularities as the conformal vacuum
on which they are built.) In other words, the stress-energy tensor in any of
these states is necessarily ill-defined on the Cauchy horizon.Comment: 6 pages, LaTeX, RevTeX, no figure
Work probability distribution and tossing a biased coin
We show that the rare events present in dissipated work that enters Jarzynski
equality, when mapped appropriately to the phenomenon of large deviations found
in a biased coin toss, are enough to yield a quantitative work probability
distribution for Jarzynski equality. This allows us to propose a recipe for
constructing work probability distribution independent of the details of any
relevant system. The underlying framework, developed herein, is expected to be
of use in modelling other physical phenomena where rare events play an
important role.Comment: 6 pages, 4 figures
Quantum-secure message authentication via blind-unforgeability
Formulating and designing unforgeable authentication of classical messages in
the presence of quantum adversaries has been a challenge, as the familiar
classical notions of unforgeability do not directly translate into meaningful
notions in the quantum setting. A particular difficulty is how to fairly
capture the notion of "predicting an unqueried value" when the adversary can
query in quantum superposition. In this work, we uncover serious shortcomings
in existing approaches, and propose a new definition. We then support its
viability by a number of constructions and characterizations. Specifically, we
demonstrate a function which is secure according to the existing definition by
Boneh and Zhandry, but is clearly vulnerable to a quantum forgery attack,
whereby a query supported only on inputs that start with 0 divulges the value
of the function on an input that starts with 1. We then propose a new
definition, which we call "blind-unforgeability" (or BU.) This notion matches
"intuitive unpredictability" in all examples studied thus far. It defines a
function to be predictable if there exists an adversary which can use
"partially blinded" oracle access to predict values in the blinded region. Our
definition (BU) coincides with standard unpredictability (EUF-CMA) in the
classical-query setting. We show that quantum-secure pseudorandom functions are
BU-secure MACs. In addition, we show that BU satisfies a composition property
(Hash-and-MAC) using "Bernoulli-preserving" hash functions, a new notion which
may be of independent interest. Finally, we show that BU is amenable to
security reductions by giving a precise bound on the extent to which quantum
algorithms can deviate from their usual behavior due to the blinding in the BU
security experiment.Comment: 23+9 pages, v3: published version, with one theorem statement in the
summary of results correcte
Optimal estimation of entanglement
Entanglement does not correspond to any observable and its evaluation always
corresponds to an estimation procedure where the amount of entanglement is
inferred from the measurements of one or more proper observables. Here we
address optimal estimation of entanglement in the framework of local quantum
estimation theory and derive the optimal observable in terms of the symmetric
logarithmic derivative. We evaluate the quantum Fisher information and, in
turn, the ultimate bound to precision for several families of bipartite states,
either for qubits or continuous variable systems, and for different measures of
entanglement. We found that for discrete variables, entanglement may be
efficiently estimated when it is large, whereas the estimation of weakly
entangled states is an inherently inefficient procedure. For continuous
variable Gaussian systems the effectiveness of entanglement estimation strongly
depends on the chosen entanglement measure. Our analysis makes an important
point of principle and may be relevant in the design of quantum information
protocols based on the entanglement content of quantum states.Comment: 9 pages, 2 figures, v2: minor correction
A dynamical model of surrogate reactions
A new dynamical model is developed to describe the whole process of surrogate
reactions; transfer of several nucleons at an initial stage, thermal
equilibration of residues leading to washing out of shell effects and decay of
populated compound nuclei are treated in a unified framework. Multi-dimensional
Langevin equations are employed to describe time-evolution of collective
coordinates with a time-dependent potential energy surface corresponding to
different stages of surrogate reactions. The new model is capable of
calculating spin distributions of the compound nuclei, one of the most
important quantity in the surrogate technique. Furthermore, various observables
of surrogate reactions can be calculated, e.g., energy and angular distribution
of ejectile, and mass distributions of fission fragments. These features are
important to assess validity of the proposed model itself, to understand
mechanisms of the surrogate reactions and to determine unknown parameters of
the model. It is found that spin distributions of compound nuclei produced in
O+U O+U and O+U
O+U reactions are equivalent and much less than
10, therefore satisfy conditions proposed by Chiba and Iwamoto (PRC 81,
044604(2010)) if they are used as a pair in the surrogate ratio method.Comment: 17 pages, 5 figure
Universal pion freeze-out phase-space density
Results on the pion phase-space density at freeze-out in sulphur- nucleus. Pb-Pb and pi -p collisions at the CERN SPS are presented. All heavy-ion reactions are consistent with the thermal Bose-Einstein distribution f=[exp(E/T)-1]/sup -1/ at T~120 MeV, modified for radial expansion. pi -p data are also consistent with f, but at T~180 MeV and without radial flow. (18 refs)
- …
