Entanglement does not correspond to any observable and its evaluation always
corresponds to an estimation procedure where the amount of entanglement is
inferred from the measurements of one or more proper observables. Here we
address optimal estimation of entanglement in the framework of local quantum
estimation theory and derive the optimal observable in terms of the symmetric
logarithmic derivative. We evaluate the quantum Fisher information and, in
turn, the ultimate bound to precision for several families of bipartite states,
either for qubits or continuous variable systems, and for different measures of
entanglement. We found that for discrete variables, entanglement may be
efficiently estimated when it is large, whereas the estimation of weakly
entangled states is an inherently inefficient procedure. For continuous
variable Gaussian systems the effectiveness of entanglement estimation strongly
depends on the chosen entanglement measure. Our analysis makes an important
point of principle and may be relevant in the design of quantum information
protocols based on the entanglement content of quantum states.Comment: 9 pages, 2 figures, v2: minor correction