Formulating and designing unforgeable authentication of classical messages in
the presence of quantum adversaries has been a challenge, as the familiar
classical notions of unforgeability do not directly translate into meaningful
notions in the quantum setting. A particular difficulty is how to fairly
capture the notion of "predicting an unqueried value" when the adversary can
query in quantum superposition. In this work, we uncover serious shortcomings
in existing approaches, and propose a new definition. We then support its
viability by a number of constructions and characterizations. Specifically, we
demonstrate a function which is secure according to the existing definition by
Boneh and Zhandry, but is clearly vulnerable to a quantum forgery attack,
whereby a query supported only on inputs that start with 0 divulges the value
of the function on an input that starts with 1. We then propose a new
definition, which we call "blind-unforgeability" (or BU.) This notion matches
"intuitive unpredictability" in all examples studied thus far. It defines a
function to be predictable if there exists an adversary which can use
"partially blinded" oracle access to predict values in the blinded region. Our
definition (BU) coincides with standard unpredictability (EUF-CMA) in the
classical-query setting. We show that quantum-secure pseudorandom functions are
BU-secure MACs. In addition, we show that BU satisfies a composition property
(Hash-and-MAC) using "Bernoulli-preserving" hash functions, a new notion which
may be of independent interest. Finally, we show that BU is amenable to
security reductions by giving a precise bound on the extent to which quantum
algorithms can deviate from their usual behavior due to the blinding in the BU
security experiment.Comment: 23+9 pages, v3: published version, with one theorem statement in the
summary of results correcte