research

The thermal and two-particle stress-energy must be ill-defined on the 2-d Misner space chronology horizon

Abstract

We show that an analogue of the (four dimensional) image sum method can be used to reproduce the results, due to Krasnikov, that for the model of a real massless scalar field on the initial globally hyperbolic region IGH of two-dimensional Misner space there exist two-particle and thermal Hadamard states (built on the conformal vacuum) such that the (expectation value of the renormalised) stress-energy tensor in these states vanishes on IGH. However, we shall prove that the conclusions of a general theorem by Kay, Radzikowski and Wald still apply for these states. That is, in any of these states, for any point b on the Cauchy horizon and any neighbourhood N of b, there exists at least one pair of non-null related points (x,x'), with x and x' in the intersection of IGH with N, such that (a suitably differentiated form of) its two-point function is singular. (We prove this by showing that the two-point functions of these states share the same singularities as the conformal vacuum on which they are built.) In other words, the stress-energy tensor in any of these states is necessarily ill-defined on the Cauchy horizon.Comment: 6 pages, LaTeX, RevTeX, no figure

    Similar works