122 research outputs found

    44-jähriger Patient mit kulturnegativer, purulenter Perikarditis

    Get PDF
    Zusammenfassung: Wir berichten über einen Patienten mit purulenter Perikarditis und drohender Perikardtamponade, verursacht durch Neisseria meningitidis. Bei negativen Kulturen aus Blut und Perikardpunktat, wahrscheinlich bedingt durch die Vorbehandlung mit Antibiotika, konnten wir mittels Breitspektrumpolymerasekettenreaktion aus dem Perikardpunktat und einem Latexagglutinationstest aus Pleurapunktat Meningokokken der SerogruppeC nachweisen. Eine Meningokokkenperikarditis ohne Meningitis ist selten. Diagnostische Methoden auf nicht-kultureller Basis spielen bei Patienten, die bereits mit Antibiotika vorbehandelt sind, eine wichtige Roll

    Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach

    Get PDF
    Steppe ecosystems represent an interesting case in which the assessment of carbon balance may be performed through a cross validation of the eddy covariance measurements against ecological inventory estimates of carbon exchanges (Ehman et al., 2002; Curtis et al., 2002). <br><br> Indeed, the widespread presence of ideal conditions for the applicability of the eddy covariance technique, as vast and homogeneous grass vegetation cover over flat terrains (Baldocchi, 2003), make steppes a suitable ground to ensure a constrain to flux estimates with independent methodological approaches. <br><br> We report about the analysis of the carbon cycle of a true steppe ecosystem in southern Siberia during the growing season of 2004 in the framework of the TCOS-Siberia project activities performed by continuous monitoring of CO<sub>2</sub> fluxes at ecosystem scale by the eddy covariance method, fortnightly samplings of phytomass, and ingrowth cores extractions for NPP assessment, and weekly measurements of heterotrophic component of soil CO<sub>2</sub> effluxes obtained by an experiment of root exclusion. <br><br> The carbon balance of the monitored natural steppe was, according to micrometeorological measurements, a sink of carbon of 151.7±36.9 g C m<sup>−2</sup>, cumulated during the growing season from May to September. This result was in agreement with the independent estimate through ecological inventory which yielded a sink of 150.1 g C m<sup>−2</sup> although this method was characterized by a large uncertainty (±130%) considering the 95% confidence interval of the estimate. Uncertainties in belowground process estimates account for a large part of the error. Thus, in particular efforts to better quantify the dynamics of root biomass (growth and turnover) have to be undertaken in order to reduce the uncertainties in the assessment of NPP. This assessment should be preferably based on the application of multiple methods, each one characterized by its own merits and flaws

    Climate-Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products

    Get PDF
    Variability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the consistency in GPP from global products which extend for more than three decades; two observation‐based approaches, the upscaling of FLUXNET site observations (FLUXCOM) and a remote sensing derived light use efficiency model (RS‐LUE), and from a suite of terrestrial biosphere models (TRENDYv6). At local scales, we find high correlations in annual GPP among the products, with exceptions in tropical and high northern latitudes. On longer time scales, the products agree on the direction of trends over 58% of the land, with large increases across northern latitudes driven by warming trends. Further, tropical regions exhibit the largest interannual variability in GPP, with both rainforests and savannas contributing substantially. Variability in savanna GPP is likely predominantly driven by water availability, although temperature could play a role via soil moisture‐atmosphere feedbacks. There is, however, no consensus on the magnitude and driver of variability of tropical forests, which suggest uncertainties in process representations and underlying observations remain. These results emphasize the need for more direct long‐term observations of GPP along with an extension of in situ networks in underrepresented regions (e.g., tropical forests). Such capabilities would support efforts to better validate relevant processes in models, to more accurately estimate GPP

    Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    Get PDF
    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007-2013) under Grant 238366. R.B., R.K., R.D., A.W., and P.D.F. were supported by the Joint Department of Energy and Climate Change/Department for Environment, Food and Rural Affairs Met Office Hadley Centre Climate Programme (GA01101). A.I. and K.N. were supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of the Environment, Japan. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for the Coupled Model Intercomparison Project (CMIP), and we thank the climate modeling groups responsible for the GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M models for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work has been conducted under the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The ISI-MIP Fast Track project was funded by the German Federal Ministry of Education and Research (BMBF) with project funding Reference 01LS1201A.This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.122247711

    The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005

    Get PDF
    Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a landbased balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294±545 Tg C in CO2-eq yr−1), inventories (1299±200 Tg C in CO2-eq yr−1) and inversions (1210±405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205±72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.JRC.H.2-Air and Climat

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin

    Global Carbon Budget 2020

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2_{2}) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2_{2} emissions (EFOS_{FOS}) are based on energy statistics and cement production data, while emissions from land-use change (ELUC_{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2_{2} concentration is measured directly and its growth rate (GATM_{ATM}) is computed from the annual changes in concentration. The ocean CO2_{2} sink (SOCEAN_{OCEAN}) and terrestrial CO2_{2} sink (SLAND_{LAND}) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM_{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS_{FOS} was 9.6 ± 0.5 GtC yr1^{-1} excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC_{LUC} was 1.6 ± 0.7 GtC yr1^{-1}. For the same decade, GATM_{ATM} was 5.1 ± 0.02 GtC yr1^{-1} (2.4 ± 0.01 ppm yr1_{-1}), SOCEAN_{OCEAN} 2.5 ±  0.6 GtC yr1^{-1}, and SLAND_{LAND} 3.4 ± 0.9 GtC yr1^{-1}, with a budget imbalance BIM_{IM} of −0.1 GtC yr1^{-1} indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS_{FOS} was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr1^{-1} excluding the cement carbonation sink (9.7 ± 0.5 GtC yr1^{-1} when cement carbonation sink is included), and ELUC_{LUC} was 1.8 ± 0.7 GtC yr1^{-1}, for total anthropogenic CO2_{2} emissions of 11.5 ± 0.9 GtC yr1^{-1} (42.2 ± 3.3 GtCO2_{2}). Also for 2019, GATM_{ATM} was 5.4 ± 0.2 GtC yr1^{-1} (2.5 ± 0.1 ppm yr1^{-1}), SOCEAN_{OCEAN} was 2.6 ± 0.6 GtC yr1^{-1}, and SLAND_{LAND} was 3.1 ± 1.2 GtC yr1^{-1}, with a BIM_{IM} of 0.3 GtC. The global atmospheric CO2_{2} concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS_{FOS} relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr1^{-1} persist for the representation of semi-decadal variability in CO2_{2} fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2_{2} flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020)
    corecore