3,321 research outputs found
Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data
Nanodust grains of a few nanometer in size are produced near the Sun by
collisional break-up of larger grains and picked-up by the magnetized solar
wind. They have so far been detected at 1 AU by only the two STEREO spacecraft.
Here we analyze the spectra measured by the radio and plasma wave instrument
onboard Cassini during the cruise phase close to Earth orbit; they exhibit
bursty signatures similar to those observed by the same instrument in
association to nanodust stream impacts on Cassini near Jupiter. The observed
wave level and spectral shape reveal impacts of nanoparticles at about 300
km/s, with an average flux compatible with that observed by the radio and
plasma wave instrument onboard STEREO and with the interplanetary flux models
Radio pulses from cosmic ray air showers - Boosted Coulomb and Cherenkov fields
High-energy cosmic rays passing through the Earth's atmosphere produce
extensive showers whose charges emit radio frequency pulses. Despite the low
density of the Earth's atmosphere, this emission should be affected by the air
refractive index because the bulk of the shower particles move roughly at the
speed of radio waves, so that the retarded altitude of emission, the
relativistic boost and the emission pattern are modified. We consider in this
paper the contribution of the boosted Coulomb and the Cherenkov fields and
calculate analytically the spectrum using a very simplified model in order to
highlight the main properties. We find that typically the lower half of the
shower charge energy distribution produces a boosted Coulomb field, of
amplitude comparable to the levels measured and to those calculated previously
for synchrotron emission. Higher energy particles produce instead a
Cherenkov-like field, whose amplitude may be smaller because both the negative
charge excess and the separation between charges of opposite signs are small at
these energies.Comment: 10 figures - Accepted by Astronomy & Astrophysic
Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?
The STEREO/WAVES instrument has detected a very large number of intense
voltage pulses. We suggest that these events are produced by impact ionisation
of nanoparticles striking the spacecraft at a velocity of the order of
magnitude of the solar wind speed. Nanoparticles, which are half-way between
micron-sized dust and atomic ions, have such a large charge-to-mass ratio that
the electric field induced by the solar wind magnetic field accelerates them
very efficiently. Since the voltage produced by dust impacts increases very
fast with speed, such nanoparticles produce signals as high as do much larger
grains of smaller speeds. The flux of 10-nm radius grains inferred in this way
is compatible with the interplanetary dust flux model. The present results may
represent the first detection of fast nanoparticles in interplanetary space
near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure
: Volcanoes and Humans since the Last InterglaciaL in Basse Auvergne (Massif Central, France)
pdf du manuscritThe impact of volcanic eruptions needs to be considered more closely from the point of view of human behaviour in an area of volcanic activity . In the Massif Central, selected case-studies allow us to discuss the effect of local volcanism on the vegetal cover and the patterns of human settlement.La perception de ce que furent les comportements humains en zone volcanique active aux temps préhistoriques reste encore très floue. On examine ici l'enregistrement de l'activité de la Chaîne des Puys dans la plaine adjacente de la Limagne au Pléistocène récent et à l'Holocène. Les impacts environnementaux sont discutés et des perspectives archéologiques sont esquissées
Estimation des formes du phosphore dans la rivière Venoge en crue
Des échantillons d'eau de rivière ont été prélevés près de l'embouchure de la Venoge, affluent du Léman, au cours de cinq crues survenues entre octobre 1986 et novembre 1987. Les échantillons ont été extraits de grands volumes d'eau à l'aide d'une centrifugeuse à débit continu. La concentration de matières en suspension, et les formes du phosphore de ces échantillons ont été dosés. L'interprétation de ces données, basée sur une méthode de régression progressive, montre que la concentration en phosphore particulaire total peut être estimée par deux paramètres, la fraction de suspensions supérieure à 63 µm et la concentration en phosphore réactif dissous. Par ailleurs, puisqu'il existe des relations statistiques entre le phosphore particulaire total et les autres formes du phosphore particulaire, il est possible d'évaluer la concentration de ces dernières (formes de phosphore apatitique, non apatitique, organique et inorganique). Le phosphore total dissous peut être pareillement estimé en fonction du phosphore réactif dissous. L'estimation des formes du phosphore et ainsi que celle de leur charge en crue peut donc se faire même lorsque le volume des échantillons est limité, c'est-à-dire, lorsque la quantité de matières en suspension n'est pas suffisante pour l'analyse de toutes les formes du phosphore particutaire.In order to gain a better understanding of phosphorus transport in a storm-dependent river system, water samples were collected near the mouth of the River Venoge, Switzerlang, during five storm events between october 1986 and november 1987. Suspended sediment (SS) was extracted from large-volume water samples by continuous flow centrifugation. Soluble and particulate forms of phosphorus were subsequently analysed with the centrifuged and filtered (0.45 µm) waters, and freeze-dried SS in a < 63 µm fraction.However, the sampling usually performed at more than 4-hour intervals could not guarantee that no information had been missed, for example, the instantaneous fluctuation of soluble reactive phosphorus (SRP) during the events. Although more frequent sampling using an auto-sampler is feasible, the small volume of raw water cannot provide sufficient sediment for all the analyses of phosphorus forms. Thus, it would be useful to find a model capable of estimating phosphorus concentration in different forms, whenever the present measurements are not possible.A multivariate progressive analysis of the measured phosphorus data set shows that total particulate phosphorus (TPP) concentration can be estimated as a function of two parameters, the percentage of a SS fraction coarser than 63 µm and the SRP concentration measured in filtered water. On the other hand, general statistical relationships exist between the various forms of phosphorus. Total soluble phosphorus (TSP) is dependent upon SRP. Organic phosphorus (OP) and non-apatite inorganic phosphorus (NAIP) can be approximately assessed from TPP, measured or calculated. Then, apatite phosphorus (AP), inorganic phosphorus (IP) and total phosphorus in raw water can be calculated by means of summation/substraction operations.Modelling is apparently suitable to the storm events during which only a limited volume of water samples could be collected. It also provides a rapid way to estimate the partitioning of phosphorus loads in high flow periods of the river system, thereby reducing the field and laboratory work required
Are we seeing accretion flows in a 250kpc-sized Ly-alpha halo at z=3?
Using MUSE on the ESO-VLT, we obtained a 4 hour exposure of the z=3.12 radio
galaxy MRC0316-257. We detect features down to ~10^-19 erg/s/cm^2/arcsec^2 with
the highest surface brightness regions reaching more than a factor of 100
higher. We find Ly-alpha emission out to ~250 kpc in projection from the active
galactic nucleus (AGN). The emission shows arc-like morphologies arising at
150-250 kpc from the nucleus in projection with the connected filamentary
structures reaching down into the circum-nuclear region. The most distant arc
is offset by 700 km/s relative to circum-nuclear HeII 1640 emission, which we
assume to be at the systemic velocity. As we probe emission closer to the
nucleus, the filamentary emission narrows in projection on the sky, the
relative velocity decreases to ~250 km/s, and line full-width at half maximum
range from 300-700 km/s. From UV line ratios, the emission on scales of 10s of
kpc from the nucleus along a wide angle in the direction of the radio jets is
clearly excited by the radio jets and ionizing radiation of the AGN. Assuming
ionization equilibrium, the more extended emission outside of the axis of the
jet direction would require 100% or more illumination to explain the observed
surface brightness. High speed (>300 km/s) shocks into rare gas would provide
sufficiently high surface brightness. We discuss the possibility that the arcs
of Ly-alpha emission represent accretion shocks and the filamentary emission
represent gas flows into the halo, and compare our results with gas accretion
simulations.Comment: 4 pages, 2 figures, 1 table, A&A letters accepte
Spacecraft charging and ion wake formation in the near-Sun environment
A three-dimensional (3-D), self-consistent code is employed to solve for the
static potential structure surrounding a spacecraft in a high photoelectron
environment. The numerical solutions show that, under certain conditions, a
spacecraft can take on a negative potential in spite of strong photoelectron
currents. The negative potential is due to an electrostatic barrier near the
surface of the spacecraft that can reflect a large fraction of the
photoelectron flux back to the spacecraft. This electrostatic barrier forms if
(1) the photoelectron density at the surface of the spacecraft greatly exceeds
the ambient plasma density, (2) the spacecraft size is significantly larger
than local Debye length of the photoelectrons, and (3) the thermal electron
energy is much larger than the characteristic energy of the escaping
photoelectrons. All of these conditions are present near the Sun. The numerical
solutions also show that the spacecraft's negative potential can be amplified
by an ion wake. The negative potential of the ion wake prevents secondary
electrons from escaping the part of spacecraft in contact with the wake. These
findings may be important for future spacecraft missions that go nearer to the
Sun, such as Solar Orbiter and Solar Probe Plus.Comment: 25 pages, 7 figures, accepted for publication in Physics of Plasma
On the unconstrained expansion of a spherical plasma cloud turning collisionless : case of a cloud generated by a nanometer dust grain impact on an uncharged target in space
Nano and micro meter sized dust particles travelling through the heliosphere
at several hundreds of km/s have been repeatedly detected by interplanetary
spacecraft. When such fast moving dust particles hit a solid target in space,
an expanding plasma cloud is formed through the vaporisation and ionisation of
the dust particles itself and part of the target material at and near the
impact point. Immediately after the impact the small and dense cloud is
dominated by collisions and the expansion can be described by fluid equations.
However, once the cloud has reached micro-m dimensions, the plasma may turn
collisionless and a kinetic description is required to describe the subsequent
expansion. In this paper we explore the late and possibly collisionless
spherically symmetric unconstrained expansion of a single ionized ion-electron
plasma using N-body simulations. Given the strong uncertainties concerning the
early hydrodynamic expansion, we assume that at the time of the transition to
the collisionless regime the cloud density and temperature are spatially
uniform. We do also neglect the role of the ambient plasma. This is a
reasonable assumption as long as the cloud density is substantially higher than
the ambient plasma density. In the case of clouds generated by fast
interplanetary dust grains hitting a solid target some 10^7 electrons and ions
are liberated and the in vacuum approximation is acceptable up to meter order
cloud dimensions. ..
Recommended from our members
ALMA and MUSE observations reveal a quiescent multi-phase circumgalactic medium around the z ≃ 3.6 radio galaxy 4C 19.71
We present MUSE at VLT imaging spectroscopy of rest-frame ultraviolet emission lines and ALMA observations of the [C I] 3P1-3P0 emission line, probing both the ionized and diffuse molecular medium around the radio galaxy 4C 19.71 at z ≃ 3.6. This radio galaxy has extended Lyα emission over a region ∼100 kpc in size preferentially oriented along the axis of the radio jet. Faint Lyα emission extends beyond the radio hot spots. We also find extended C IV and He II emission over a region of ∼150 kpc in size, where the most distant emission lies ∼40 kpc beyond the north radio lobe and has narrow full width half maximum (FWHM) line widths of ∼180 km s-1 and a small relative velocity offset Δv ∼ 130 km s-1 from the systemic redshift of the radio galaxy. The [C I] is detected in the same region with FWHM ∼100 km s-1 and Δv ∼ 5 km s-1, while [C I] is not detected in the regions south of the radio galaxy. We interpret the coincidence in the northern line emission as evidence of relatively quiescent multi-phase gas residing within the halo at a projected distance of ∼75 kpc from the host galaxy. To test this hypothesis, we performed photoionization and photo-dissociated region (PDR) modeling, using the code Cloudy, of the three emission line regions: the radio galaxy proper and the northern and southern regions. We find that the [C I]/C IVλλ1548, 1551 and C IVλλ1548, 1551/He II ratios of the two halo regions are consistent with a PDR or ionization front in the circumgalactic medium likely energized by photons from the active galactic nuclei. This modeling is consistent with a relatively low metallicity, 0.03 < [Z/Z⊙] < 0.1, and diffuse ionization with an ionization parameter (proportional to the ratio of the photon number density and gas density) of log U ∼ -3 for the two circumgalactic line emission regions. Using rough mass estimates for the molecular and ionized gas, we find that the former may be tracing ≈2-4 orders of magnitude more mass. As our data are limited in signal-to-noise due to the faintness of the line, deeper [C I] observations are required to trace the full extent of this important component in the circumgalactic medium. © T. Falkendal et al. 2021
Posterior positional plagiocephaly treated with cranial remodeling orthosis.
Since the recommendation that infants sleep in the supine position, there has been an increase in cases of posterior positional plagiocephaly. Even though this condition is a purely cosmetic problem, if it is severe it may affect the child psychologically. Positioning may help in mild or moderate cases, but more active treatment may be necessary in severe cases.
A prospective study of 260 children treated by dynamic orthotic cranioplasty for posterior positional plagiocephaly was conducted in Lausanne from 1995 to 2001. Construction of these cranial remodelling helmets is decribed in detail.
The treatment lasted 3 months on average, was effective, well tolerated, and had zero morbidity. The ideal period for initiating this therapy is between the ages of 4 and 6 months.
The remodelling helmet is a convincing option which can be recommended in infants with posterior positional plagiocephaly whose skull deformity is not satisfactorily corrected by physiotherapy. It should always be used before surgery is considered for patients with recognised positional plagiocephaly in the first year of life
- …