269 research outputs found

    Protein markers for insulin-producing beta cells with higher glucose sensitivity

    Get PDF
    Background and Methodology: Pancreatic beta cells show intercellular differences in their metabolic glucose sensitivity and associated activation of insulin production. To identify protein markers for these variations in functional glucose sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P) H and their proteomes were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6 stably expressed reference proteins. Principal Findings: All tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain. Conclusions: Quantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes

    Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, <it>Anopheles epiroticus</it>, was highly pyrethroid-resistant in the Mekong delta, whereas <it>Anopheles minimus sensu lato </it>was pyrethroid-resistant in northern Vietnam. <it>Anopheles dirus sensu stricto </it>showed possible resistance to type II pyrethroids in central Vietnam. <it>Anopheles subpictus </it>was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved.</p> <p>Methods</p> <p>By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region.</p> <p>Results</p> <p>Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of <it>Anopheles </it>populations from the Mekong region for the presence of knockdown resistance (<it>kdr</it>), but no <it>kdr </it>mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in <it>An. epiroticus </it>and <it>An. subpictus </it>of the Mekong delta. The DDT resistance in <it>An. subpictus </it>might be conferred to a high GST activity. The pyrethroid resistance in <it>An. minimus s.l</it>. is possibly associated with increased detoxification by esterases and P450 monooxygenases.</p> <p>Conclusion</p> <p>As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region.</p

    Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program

    Get PDF
    BACKGROUND: Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. METHODOLOGY/PRINCIPAL FINDINGS: Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1(R)) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1(R) mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. CONCLUSION: The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention

    Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia

    Get PDF
    Background: Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca.\ud Methods: Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined.\ud Results: The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus\ud andAnopheles vagus. The 1014F allele was not found in the other areas.\ud Conclusion: The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are neede

    From Children to Adults: Motor Performance across the Life-Span

    Get PDF
    The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur

    Extensive permethrin and DDT resistance in Anopheles arabiensis from eastern and central Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distribution of insecticide treated nets (ITN) has been dramatically scaled up in eastern and central Sudan. Resistance to insecticides has already been reported in this region and there is an urgent need to develop appropriate resistance management strategies, which requires detailed information on the extent and causes of resistance. This study assessed resistance to permethrin and DDT in seven populations of <it>Anopheles arabiensis </it>from Sudan.</p> <p>Results</p> <p>Three out of the seven populations were defined as resistant to permethrin and five of six populations resistant to DDT according to WHO criteria. The 1014F kdr allele was present in all six populations tested and the presence of this allele was significantly correlated with resistance to permethrin (<it>P </it>= 0.0460). While homozygous 1014F individuals were statistically not more likely to survive (53.7%) permethrin than to be killed (38.6%) by the diagnostic dose, there was no difference in the likelihood of permethrin survival in heterozygotes (<it>P </it>= 0.7973). The susceptible genotypes were more likely to be killed by permethrin exposure than to survive (<it>P </it>= 0.0460). The 1014F allele failed to confer a survival advantage to the WHO diagnostic dose of DDT in either the homozygous or heterozygous state. The 1014S allele was not detected in any of the populations tested.</p> <p>Conclusion</p> <p>The kdr allele is certainly contributing to the extensive resistance to permethrin and DDT in Sudan but the high number of DDT (43%) and permethrin (16.7%) survivors that did not contain either kdr alleles suggests that other resistance mechanisms are also present in these populations. The high frequency of permethrin resistance throughout central and eastern Sudan is a cause of great concern for malaria control activities.</p

    PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles culicifacies s.l</it>., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (<it>kdr</it>) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of <it>kdr </it>mutation (L1014F) in a field population of <it>An. culicifacies s.l</it>. and three new PCR-based methods for <it>kdr </it>genotyping.</p> <p>Methods</p> <p>The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant <it>An. culicifacies s.l</it>. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for <it>kdr </it>genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped.</p> <p>Results</p> <p>The genotyping of this <it>An. culicifacies s.l</it>. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the <it>kdr </it>allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium.</p> <p>Conclusion</p> <p>The Leu-Phe mutation, which generates the <it>kdr </it>phenotype in many insects, was detected in a pyrethroid and DDT resistant <it>An. culicifacies s.l</it>. population. Three PCR-based methods were developed for <it>kdr </it>genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at <it>kdr </it>locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped.</p

    Molecular Ecology of Pyrethroid Knockdown Resistance in Culex pipiens pallens Mosquitoes

    Get PDF
    Pyrethroid insecticides have been extensively used in China and worldwide for public health pest control. Accurate resistance monitoring is essential to guide the rational use of insecticides and resistance management. Here we examined the nucleotide diversity of the para-sodium channel gene, which confers knockdown resistance (kdr) in Culex pipiens pallens mosquitoes in China. The sequence analysis of the para-sodium channel gene identified L1014F and L1014S mutations. We developed and validated allele-specific PCR and the real-time TaqMan methods for resistance diagnosis. The real-time TaqMan method is more superior to the allele-specific PCR method as evidenced by higher amplification rate and better sensitivity and specificity. Significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014S mutations in the kdr gene can be used as a molecular marker for deltamethrin resistance monitoring in natural Cx. pipiens pallens populations in the East China region. The laboratory selection experiment found that L1014F mutation frequency, but not L1014S mutation, responded to deltamethrin selection, suggesting that the L1014F mutation is the key mutation conferring resistance to deltamethrin. High L1014F mutation frequency detected in six populations of Cx. pipens pallens suggests high prevalence of pyrethroid resistance in Eastern China, calling for further surveys to map the resistance in China and for investigating alternative mosquito control strategies

    Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae.

    Get PDF
    Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype
    corecore