404 research outputs found
Sounding Rocket Experiment CLASP2: Development of the UV High-Precision Polarization Spectroscopy Device
Sounding Rocket Experiment CLASP2 (Chromospheric LAyer Spectro-Polarimeter-2): Development of the UV (Ultraviolet) High-Precision Polarization Spectroscopy Devic
Conceptual design of the satellite payload for the JASMINE mission
To investigate the evolution of our Galaxy, we plan to measure the distances and motions of stars in the Galactic center region. Additionally, our goal is to detect planets within the habitable zone around mid-M-type stars using transit phenomena. To achieve these objectives, we initiated the Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE) project, targeting a 40 microarcsecond annual parallax measurement and aiming photometric accuracy of less than 0.3% for mid-M-type stars. A conceptual study of the observation instrument was conducted. As a result, the telescope is designed with high stability in orbit through carefully chosen materials and a special thermal design. A three-year operation is planned to collect sufficient data for annual parallax measurements. The telescope, with a diameter of 36 cm, covers wavelengths from 1.0 to 1.6 microns using InGaAs detectors. This paper will detail how instrument parameters were selected based on scientific objectives
The Hyper Suprime-Cam SSP Survey: Overview and Survey Design
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of
the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of
scientists from Japan, Taiwan and Princeton University is using HSC to carry
out a 300-night multi-band imaging survey of the high-latitude sky. The survey
includes three layers: the Wide layer will cover 1400 deg in five broad
bands (), with a point-source depth of . The
Deep layer covers a total of 26~deg in four fields, going roughly a
magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter
still in two pointings of HSC (a total of 3.5 deg). Here we describe the
instrument, the science goals of the survey, and the survey strategy and data
processing. This paper serves as an introduction to a special issue of the
Publications of the Astronomical Society of Japan, which includes a large
number of technical and scientific papers describing results from the early
phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the
coordinates of HSC-Wide spring equatorial field in Table
CLASP2: High-Precision Spectro-Polarimetery in Mg II h & k
The international team is promoting the CLASP2 (Chromospheric LAyer Spectro-Polarimeter 2) sounding rocket experiment, which is the re-flight of CLASP (2015). In this second flight, we will refit the existing CLASP instrument to measure all Stokes parameters in Mg II h k lines, and aim at inferring the magnetic field information in the upper chromosphere combining the Hanle and Zeeman effects. CLASP2 project was approved by NASA in December 2016, and is now scheduled to fly in 2019
Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.
Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline
Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport
Metals like manganese (Mn) and iron (Fe) are essential for metabolism, while cadmium (Cd) is toxic for virtually all living organisms. Understanding the transport of these metals is important for breeding better crops. We have identified that OsNRAMP5 contributes to Mn, Fe and Cd transport in rice. OsNRAMP5 expression was restricted to roots epidermis, exodermis, and outer layers of the cortex as well as in tissues around the xylem. OsNRAMP5 localized to the plasma membrane, and complemented the growth of yeast strains defective in Mn, Fe, and Cd transport. OsNRAMP5 RNAi (OsNRAMP5i) plants accumulated less Mn in the roots, and less Mn and Fe in shoots, and xylem sap. The suppression of OsNRAMP5 promoted Cd translocation to shoots, highlighting the importance of this gene for Cd phytoremediation. These data reveal that OsNRAMP5 contributes to Mn, Cd, and Fe transport in rice and is important for plant growth and development
DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains
List of genes down-regulated in both W6nk2 and Zhenong8 after 15Â days exposure to 5Â ÎźM Cd. (DOC 130 kb
Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9-1.8+1.7 for z≲1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum
The population of merging compact binaries inferred using gravitational waves through GWTC-3
We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 and 1700 and the NSBH merger rate to be between 7.8 and 140 , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 and 44 at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from to . We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 . We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above . The rate of BBH mergers is observed to increase with redshift at a rate proportional to with for . Observed black hole spins are small, with half of spin magnitudes below . We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
- …