276 research outputs found

    The fractional Schr\"{o}dinger operator and Toeplitz matrices

    Full text link
    Confining a quantum particle in a compact subinterval of the real line with Dirichlet boundary conditions, we identify the connection of the one-dimensional fractional Schr\"odinger operator with the truncated Toeplitz matrices. We determine the asymptotic behaviour of the product of eigenvalues for the α\alpha-stable symmetric laws by employing the Szeg\"o's strong limit theorem. The results of the present work can be applied to a recently proposed model for a particle hopping on a bounded interval in one dimension whose hopping probability is given a discrete representation of the fractional Laplacian.Comment: 10 pages, 2 figure

    Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab

    Get PDF
    We present 3D full-sphere supernova simulations of non-rotating low-mass (~9 Msun) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions [~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen-neon-magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the Vertex-Prometheus code, whereas the ECSN explosion is modelled using parametric neutrino transport in the Prometheus-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of <~5x10^{-3} Msun have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly-born NS. The LMCCSNe model with less 2nd dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km/s and a NS spin period of ~30 ms, both not largely different from those of the Crab pulsar at birth.Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRA

    Neutrino self-interaction and MSW effects on the supernova neutrino-process

    Full text link
    We calculate the abundances of 7^{7}Li, 11^{11}B, 92^{92}Nb, 98^{98}Tc, 138^{138}La, and 180^{180}Ta produced by neutrino (ν)(\nu) induced reactions in a core-collapse supernova explosion. We consider the modification by ν\nu self-interaction (ν\nu-SI) near the neutrinosphere and the Mikheyev-Smirnov-Wolfenstein effect in outer layers for time-dependent neutrino energy spectra. Abundances of 7^{7}Li and heavy isotopes 92^{92}Nb, 98^{98}Tc and 138^{138}La are reduced by a factor of 1.5-2.0 by the ν\nu-SI. In contrast, 11^{11}B is relatively insensitive to the ν\nu-SI. We find that the abundance ratio of heavy to light nucleus, 138^{138}La/11^{11}B, is sensitive to the neutrino mass hierarchy, and the normal mass hierarchy is more likely to be consistent with the solar abundances

    Spectra and Light Curves of GRB Afterglows

    Full text link
    We performed accurate numerical calculations of angle-, time-, and frequency-dependent radiative transfer for the relativistic motion of matter in gamma-ray burst (GRB) models. Our technique for solving the transfer equation, which is based on the method of characteristics, can be applied to the motion of matter with a Lorentz factor up to 1000. The effect of synchrotron self-absorption is taken into account. We computed the spectra and light curves from electrons with a power-law energy distribution in an expanding relativistic shock and compare them with available analytic estimates. The behavior of the optical afterglows from GRB 990510 and GRB 000301c is discussed qualitatively.Comment: 8 pages, 7 figure

    Observations of SN 2017ein Reveal Shock Breakout Emission and A Massive Progenitor Star for a Type Ic Supernova

    Full text link
    We present optical and ultraviolet observations of nearby type Ic supernova SN 2017ein as well as detailed analysis of its progenitor properties from both the early-time observations and the prediscovery Hubble Space Telescope (HST) images. The optical light curves started from within one day to \sim275 days after explosion, and optical spectra range from \sim2 days to \sim90 days after explosion. Compared to other normal SNe Ic like SN 2007gr and SN 2013ge, \mbox{SN 2017ein} seems to have more prominent C{\footnotesize II} absorption and higher expansion velocities in early phases, suggestive of relatively lower ejecta mass. The earliest photometry obtained for \mbox{SN 2017ein} show indications of shock cooling. The best-fit obtained by including a shock cooling component gives an estimate of the envelope mass as \sim0.02 M_{\odot} and stellar radius as 8±\pm4 R_{\odot}. Examining the pre-explosion images taken with the HST WFPC2, we find that the SN position coincides with a luminous and blue point-like source, with an extinction-corrected absolute magnitude of MV_V\sim-8.2 mag and MI_I\sim-7.7 mag.Comparisons of the observations to the theoretical models indicate that the counterpart source was either a single WR star or a binary with whose members had high initial masses, or a young compact star cluster. To further distinguish between different scenarios requires revisiting the site of the progenitor with HST after the SN fades away.Comment: 28 pages, 19 figures; accepted for publication in The Astrophysical Journa

    Fast evolving pair-instability supernova models: evolution, explosion, light curves

    Get PDF
    With an increasing number of superluminous supernovae (SLSNe) discovered, the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISNe), (2) magnetar-driven supernovae and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study, we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light-curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 and 250 M⊙) at relatively high metallicity (Z = 0.001) do not retain hydrogen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light-curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition

    Virus-Induced Cancers of the Skin and Mucosa:Are We Dealing with "Smoking Guns" or "Smoke and Mirrors" in the Operating Theatre?

    Get PDF
    Introduction: Human papillomavirus (HPV) alone is thought to cause ~610,000 cases of cancer per year, and is the dominant aetiological agent for ano-genital (esp. cervical) and head and neck cancers (esp. oropharyngeal). Merkel cell polyomavirus (MCV) is a more recently discovered virus which causes Merkel cell carcinoma, a rare but highly aggressive skin malignancy. Methods: We explored the available published evidence to see if transmission of live HPV or MCV virus in smoke generated by laser or diathermy was feasible, and would pose an infection risk. Long-term infection with such carcinogenic viruses would then pose an increased risk for the development of virus-induced cancers in medical personnel. Results: The morphological structures of both HPV and MCV are very similar, and the size, external capsids and genomic structures show striking similarity. Both viruses have a non-enveloped external protein capsid consisting of 72 capsomeres, and a double-stranded DNA core. Sizes of both viruses range from 50 to 60 nm. There are now recent data demonstrating live and infectious HPV in smoke, and that these viruses can be used to infect cells in vitro. Further, anecdotal reports of virus transmission leading to disease causation in the production of respiratory airway viral warts (benign disease), and, finally, reports of HPV-induced oropharyngeal carcinoma (malignant disease) in two gynaecological surgeons as an occupational health hazard have been published recently. Conclusion: There is now sufficient evidence to support the hypotheses that live infectious carcinogenic viruses can be transmitted via smoke generated from surgical procedures, and, in rare instances, actually cause significant disease. Protective measures such as smoke extraction and airway protection should be instituted for all healthcare personnel, particularly those with multiple repeated exposures such as gynaecological surgeons

    High viral load of Merkel cell polyomavirus DNA sequences in Langerhans cell sarcoma tissues.

    Get PDF
    International audienceBACKGROUND: Langerhans cell (LC) sarcoma (LCS) is a high-grade neoplasm with overtly malignant cytologic features and an LC phenotype. We very recently suggested that LC behaves as a reservoir for common dermotropic Merkel cell polyomavirus (MCPyV) and determined the relationship between LC histiocytosis (LCH), which has an underlining oncogenic capacity, and MCPyV as a trigger for a reactive process rather than a neoplastic process. We propose LC to be a reservoir for MCPyV and hypothesize that some LCS subtypes may be related to the MCPyV agent. FINDINGS: We examined seven LCS tissues using multiplex quantitative PCR (Q-PCR) and immunohistochemistry with anti MCPyV large-T (LT) antigen antibody. High viral loads of MCPyV DNA sequences (viral load = relative levels of MCPyV) were detected (0.328-0.772 copies/cell (Merkel cell carcinoma (MCC) = 1.0)) using Q-PCR in 43% (3/7) tissues, but LT antigen expression was not observed (0/7). CONCLUSIONS: Frequent MCPyV-DNA amplification suggests that LCS in some patients may be related to MCPyV infection. Moreover, the higher viral load of LCS (median, 0.453 copies/cell) than low load of LCH (0.003, median of 12 cases) (P < 0.01) may suggest a virally induced tumorigenic process in some LCS. Although the absence of LT antigen expression may indicate a different role for MCPyV in this pathology, some subtypes of LCS may develop in the background of MCPyV-infected LC. To the best of our knowledge, this is the first report on the relationship between MCPyV and LCS. The recent discovery of MCPyV opened new therapeutic avenues for MCC. These data open novel possibilities for therapeutic interventions against LCS

    Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory

    Get PDF
    Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. We demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral properties of SLSNe-I at different spectral phases. We find that Mn II most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label
    corecore