184 research outputs found

    Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions

    Get PDF
    Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity (k) parameterizations, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind spee

    A tropical West Pacific OH minimum and implications for stratospheric composition

    Get PDF
    Most of the short-lived biogenic and anthropogenic chemical species that are emitted into the atmosphere break down efficiently by reaction with OH and do not reach the stratosphere. Here we show the existence of a pronounced minimum in the tropospheric column of ozone over the West Pacific, the main source region for stratospheric air, and suggest a corresponding minimum of the tropospheric column of OH. This has the potential to amplify the impact of surface emissions on the stratospheric composition compared to the impact when assuming globally uniform OH conditions. Specifically, the role of emissions of biogenic halogenated species for the stratospheric halogen budget and the role of increasing emissions of SO<sub>2</sub> in Southeast Asia or from minor volcanic eruptions for the increasing stratospheric aerosol loading need to be reassessed in light of these findings. This is also important since climate change will further modify OH abundances and emissions of halogenated species. Our study is based on ozone sonde measurements carried out during the TransBrom cruise with the RV <i>Sonne</i> roughly along 140–150° E in October 2009 and corroborating ozone and OH measurements from satellites, aircraft campaigns and FTIR instruments. Model calculations with the GEOS-Chem Chemistry and Transport Model (CTM) and the ATLAS CTM are used to simulate the tropospheric OH distribution over the West Pacific and the transport pathways to the stratosphere. The potential effect of the OH minimum on species transported into the stratosphere is shown via modeling the transport and chemistry of CH<sub>2</sub>Br<sub>2</sub> and SO<sub>2</sub>

    The contribution of oceanic methyl iodide to stratospheric iodine

    Get PDF
    We investigate the contribution of oceanic methyl iodide (CH3I) to the stratospheric iodine budget. Based on CH3I measurements from three tropical ship campaigns and the Lagrangian transport model FLEXPART, we provide a detailed analysis of CH3I transport from the ocean surface to the cold point in the upper tropical tropopause layer (TTL). While average oceanic emissions differ by less than 50% from campaign to campaign, the measurements show much stronger variations within each campaign. A positive correlation between the oceanic CH3I emissions and the efficiency of CH3I troposphere–stratosphere transport has been identified for some cruise sections. The mechanism of strong horizontal surface winds triggering large emissions on the one hand and being associated with tropical convective systems, such as developing typhoons, on the other hand, could explain the identified correlations. As a result of the simultaneous occurrence of large CH3I emissions and strong vertical uplift, localized maximum mixing ratios of 0.6 ppt CH3I at the cold point have been determined for observed peak emissions during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere)-Sonne research vessel campaign in the coastal western Pacific. The other two campaigns give considerably smaller maxima of 0.1 ppt CH3I in the open western Pacific and 0.03 ppt in the coastal eastern Atlantic. In order to assess the representativeness of the large local mixing ratios, we use climatological emission scenarios to derive global upper air estimates of CH3I abundances. The model results are compared with available upper air measurements, including data from the recent ATTREX and HIPPO2 aircraft campaigns. In the eastern Pacific region, the location of the available measurement campaigns in the upper TTL, the comparisons give a good agreement, indicating that around 0.01 to 0.02 ppt of CH3I enter the stratosphere. However, other tropical regions that are subject to stronger convective activity show larger CH3I entrainment, e.g., 0.08 ppt in the western Pacific. Overall our model results give a tropical contribution of 0.04 ppt CH3I to the stratospheric iodine budget. The strong variations in the geographical distribution of CH3I entrainment suggest that currently available upper air measurements are not representative of global estimates and further campaigns will be necessary in order to better understand the CH3I contribution to stratospheric iodine

    Characterizing sampling biases in the trace gas climatologies of the SPARC Data Initiative

    Get PDF
    Monthly zonal mean climatologies of atmospheric measurements from satellite instruments can have biases due to the non-uniform sampling of the atmosphere by the instruments. We characterize potential sampling biases in stratospheric trace gas climatologies of the Stratospheric Processes and their Role in Climate (SPARC) Data Initiative using chemical fields from a chemistry climate model simulation and sampling patterns from 16 satellite-borne instruments. The exercise is performed for the long-lived stratospheric trace gases O3 and H2O. Monthly sample biases for O3 exceed 10% for many instruments in the high latitude stratosphere and in the upper troposphere/lower stratosphere, while annual mean sampling biases reach values of up to 20% in the same regions for some instruments. Sampling biases for H2O are generally smaller than for O3, although still notable in the upper troposphere/lower stratosphere and Southern Hemisphere high latitudes. The most important mechanism leading to monthly sampling bias is the non-uniform temporal sampling of many instruments, i.e., the fact that for many instruments, monthly means are produced from measurements which span less than the full month in question. Similarly, annual mean sampling biases are well explained by non-uniformity in the month-to-month sampling by different instruments. Non-uniform sampling in latitude and longitude are shown to also lead to non-negligible sampling biases, which are most relevant for climatologies which are otherwise free of sampling biases due to non-uniform temporal sampling

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    The Measurement of Solar Diameter and Limb Darkening Function with the Eclipse Observations

    Full text link
    The Total Solar Irradiance varies over a solar cycle of 11 years and maybe over cycles with longer period. Is the solar diameter variable over time too? We introduce a new method to perform high resolution astrometry of the solar diameter from the ground, through the observations of eclipses by reconsidering the definition of the solar edge. A discussion of the solar diameter and its variations must be linked to the Limb Darkening Function (LDF) using the luminosity evolution of a Baily's Bead and the profile of the lunar limb available from satellite data. This approach unifies the definition of solar edge with LDF inflection point for eclipses and drift-scan or heliometric methods. The method proposed is applied for the videos of the eclipse in 15 January 2010 recorded in Uganda and in India. The result shows light at least 0.85 arcsec beyond the inflection point, and this suggests to reconsider the evaluations of the historical eclipses made with naked eye.Comment: 16 pages, 11 figures, accepted in Solar Physics. arXiv admin note: text overlap with arXiv:astro-ph/0601109 by other author
    • …
    corecore