167 research outputs found

    Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign

    Get PDF
    The GABRIEL airborne field measurement campaign, conducted over the Guyanas in October 2005, produced measurements of hydroxyl radical (OH) concentration which are significantly higher than can be simulated using current generation models of atmospheric chemistry. Based on the hypothesis that this "missing OH" is due to an as-yet undiscovered mechanism for recycling OH during the oxidation chain of isoprene, we determine that an OH recycling of about 40–50% (compared with 5–10% in current generation isoprene oxidation mechanisms) is necessary in order for our modelled OH to approach the lower error bounds of the OH observed during GABRIEL. Such a large amount of OH in our model leads to unrealistically low mixing ratios of isoprene. In order for our modelled isoprene mixing ratios to match those observed during the campaign, we also require that the effective rate constant for the reaction of isoprene with OH be reduced by about 50% compared with the lower bound of the range recommended by IUPAC. We show that a reasonable explanation for this lower effective rate constant could be the segregation of isoprene and OH in the mixed layer. Our modelling results are consistent with a global, annual isoprene source of about 500 Tg(C) yr<sup>−1</sup>, allowing experimentally derived and established isoprene flux rates to be reconciled with global models

    Surface and Boundary Layer Exchanges of Volatile Organic Compounds, Nitrogen Oxides and Ozone During the GABRIEL Campaign

    Get PDF
    Abstract. We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion of isoprene and its oxidation products.JRC.H.2-Climate chang

    The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death.

    Get PDF
    The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL-R-associated complex I as well as of the cytoplasmic TRAIL-induced complex II In both of these complexes, HOIP limits caspase-8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase-8-dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL-containing complex, LUBAC also restricts TRAIL-induced necroptosis. We identify RIPK1 and caspase-8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL-induced RIPK1-independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL-induced activation of NF-κB and, consequently, the production of cytokines, downstream of FADD, caspase-8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation

    The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    No full text
    International audienceThe new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998?2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request

    Mitochondrial permeabilization engages NF-kappa B-dependent anti-tumour activity under caspase deficiency

    Get PDF
    Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies

    Widespread reduction of ozone extremes in storylines of future climate

    Get PDF
    High ozone levels harm people and the environment, especially during extreme weather. Climate change is expected to increase the frequency and intensity of these events, exacerbating vegetation-atmosphere interactions. However, current models predict inconsistent responses to warming, potentially due to simplified vegetation representations. We address this uncertainty by incorporating realistic vegetation responses to abiotic stresses into a global atmospheric chemistry model. By constructing storylines of future climate with fixed anthropogenic emissions, we quantify how temperature and humidity changes affect ozone and associated mortality. Here, we show that locally, vegetation and photochemistry often act in concert to amplify ozone pollution extremes, while increased humidity in the free troposphere tends to suppress background ozone levels. The latter effect becomes more dominant with increasing temperatures, leading to a widespread decrease in ozone pollution across the Northern hemisphere. The storyline approach is an effective method for disentangling drivers of air pollution perturbed by climate change

    The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    Get PDF
    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO<sub>2</sub>) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures

    A hierarchical time-splitting approach for solving finite-time optimal control problems

    Get PDF
    The self-cleaning or oxidation capacity of the atmosphere is principally controlled by hydroxyl (OH) radicals in the troposphere. Hydroxyl has primary (P) and secondary (S) sources, the former mainly through the photodissociation of ozone, the latter through OH recycling in radical reaction chains. We used the recent Mainz Organics Mechanism (MOM) to advance volatile organic carbon (VOC) chemistry in the general circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry) and show that S is larger than previously assumed. By including emissions of a large number of primary VOC, and accounting for their complete breakdown and intermediate products, MOM is mass-conserving and calculates substantially higher OH reactivity from VOC oxidation compared to predecessor models. Whereas previously P and S were found to be of similar magnitude, the present work indicates that S may be twice as large, mostly due to OH recycling in the free troposphere. Further, we find that nighttime OH formation may be significant in the polluted subtropical boundary layer in summer. With a mean OH recycling probability of about 67 %, global OH is buffered and not sensitive to perturbations by natural or anthropogenic emission changes. Complementary primary and secondary OH formation mechanisms in pristine and polluted environments in the continental and marine troposphere, connected through long-range transport of O3, can maintain stable global OH levels

    Feeding your himalayan expedition: Nutritional signatures and body composition adaptations of trekkers and porters

    Get PDF
    High-altitude exposure leads to many physiological challenges, such as weight loss and dehydration. However, little attention has been posed to the role of nutrition and ethnic differences. Aiming to fulfill this gap, five Italian trekkers and seven Nepalese porters, all males, recorded their diet in diaries during a Himalayan expedition (19 days), and the average daily intake of micro and macro-nutrients were calculated. Bioimpedance analysis was performed five times during the trek; muscle ultrasound was performed before and after the expedition, only for the Italians. The Nepalese group consumed a lot of rice and only Italians consumed cheese. Water intake was slightly over 3000 g/d for both groups. Nepalese diet had a higher density of dietary fibre and lower density of riboflavin, vitamins A, K, and B12. Intake of calcium was lower than recommended levels. Body mass index, waist circumference, fat-free mass, and total body water decreased in both groups, whereas resistance (Rz) increased. Italians reactance (Xc) increased at day 9, whereas that of Nepalese occurred at days 5, 9, and 16. The cross-sectional area of the Vastus lateralis was reduced after the expedition. Specific nutritional and food-related risk factors guidance is needed for diverse expedition groups. Loss of muscle mass and balance of fluids both deserve a particular focus as concerns altitude expeditions

    The atmospheric chemistry box model CAABA/MECCA-3.0

    Get PDF
    We present version 3.0 of the atmospheric chemistry box model CAABA/MECCA. In addition to a complete update of the rate coefficients to the most recent recommendations, a number of new features have been added: chemistry in multiple aerosol size bins; automatic multiple simulations reaching steady-state conditions; Monte-Carlo simulations with randomly varied rate coefficients within their experimental uncertainties; calculations along Lagrangian trajectories; mercury chemistry; more detailed isoprene chemistry; tagging of isotopically labeled species. Further changes have been implemented to make the code more user-friendly and to facilitate the analysis of the model results. Like earlier versions, CAABA/MECCA-3.0 is a community model published under the GNU General Public License
    corecore