
A hierarchical time-splitting approach for
solving finite-time optimal control problems

Georgios Stathopoulos1, Tamás Keviczky2 and Yang Wang3

Abstract— We present a hierarchical computation approach
for solving finite-time optimal control problems using operator
splitting methods. The first split is performed over the time
index and leads to as many subproblems as the length of
the prediction horizon. Each subproblem is solved in parallel
and further split into three by separating the objective from
the equality and inequality constraints respectively, such that
an analytic solution can be achieved for each subproblem.
The proposed approach leads to a highly parallelizable nested
decomposition scheme. We present a numerical comparison
with the standard state-of-the-art solver SDPT3, and provide
analytic solutions to several elements of the algorithm, which
enhances its applicability in fast large-scale applications.

I. INTRODUCTION

Online optimization and optimal control methods are in-
creasingly being considered for fast embedded applications,
where efficient, reliable, and predictable computations in-
volved in calculating the optimal solutions are a necessity.
The potential use of optimal control in such embedded
systems promises energy savings and more efficient resource
usage, increased safety, and improved fault detection. The
range of application areas that can benefit from embedded
optimization include the mechatronics, automotive, process
control and aerospace sectors [1]. The promise of unprece-
dented performance and capabilities in these applications,
which typically rely on large-volume, real-time embedded
control systems, has fueled recent research efforts towards
fast and parallel optimization solvers.

One of the main research directions aim at develop-
ing special-purpose optimization solvers that target typical
control or estimation problems arising in optimal control.
Parallel solutions to systems of linear equations appearing
in interior-point, and active set methods have been studied
in [2]–[5]. In this work we consider a quadratic finite-
time optimal control problem for discrete-time systems with
constrained linear dynamics, which appears in typical model
predictive control problems [6]. We investigate and develop
different parallelizable algorithms using operator splitting
techniques [7], [8] that have recently shown great promise for
speeding up calculations involved in computing optimal solu-
tions with medium accuracy [9]–[11]. Our approach relies on
a hierarchical splitting up of the specially structured finite-
time optimal control problem. The first split is performed

1G. Stathopoulos is with Laboratoire d’Automatique, EPFL, CH-1015
Lausanne, Switzerland, georgios.stathopoulos@epfl.ch

2T. Keviczky is with the Delft Center for Systems and Control,
Delft University of Technology, Delft, CD 2628, The Netherlands,
t.keviczky@tudelft.nl

3Y. Wang is with Stanford University, Stanford, CA 94305, USA,
yang1024@gmail.com

over the time index and leads to as many subproblems as
the length of the prediction horizon. Each subproblem can
then be solved in parallel and further split into three by
separating the objective from the equality and inequality
constraints respectively, such that an analytic solution can
be achieved for each subproblem. The proposed solution
approach leads to a nested decomposition scheme, which
is highly parallelizable. The proposed three-set splitting
method does not only solve the particular quadratic programs
(QPs) that appear in the update steps of the time-splitting
algorithm efficiently, but also provides a compact, standalone
alternative for solving generic QPs.

The paper is structured as follows. Section II presents
the main idea behind the time-splitting optimal control
approach for parallel computations, using the Alternating
Direction Method of Multipliers and deriving the exact
formulas required for each subproblem and update step. In
Section III we propose an alternative scheme for solving the
QPs with general polyhedral constraints that arise in the time-
splitting update steps (or for any other generic QP). The
two splitting schemes are combined in a hierarchical fashion
in Section IV, and numerical experiments are performed in
Section V to compare its performance with some advanced
solvers in the literature. Section VI concludes the paper.

II. TIME-SPLITTING OPTIMAL CONTROL

A. Problem Formulation

We consider the following finite-time optimal control
problem formulation that arises in typical model predictive
control applications:

minimize
1
2

N

∑
t=0

(
xT

t Qtxt +uT
t Rtut

)
(1a)

subject to (xt ,ut) ∈Xt ×Ut , t = 0, . . . ,N (1b)
xt+1 = Atxt +Btut + ct , t = 0, . . . ,N−1(1c)

where the decision variables are the states xt ∈ Rn, and the
inputs ut ∈ Rm of the system for t = 0, . . . ,N. The index t
denotes time, and the system evolves according to linear
dynamics constraint (1c) where ct ∈ Rn is considered to be
a known disturbance. Here, N is the prediction horizon and
Qt ∈ Rn×n,Rt ∈ Rm×m are symmetric matrices. The stage
cost in (1a) is convex quadratic with Qt � 0 and Rt � 0.
The stage-wise state-input pairs are constrained to reside
within polyhedra (1b) denoted by Xt and Ut , respectively.
These are constraint sets defined by linear inequalities that
involve states and inputs at the same sample time index.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148003942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Motivated by the principles of operator splitting methods
(see [12] for details and relevant references), we propose
to split the problem (1) into N + 1 smaller stage-wise
subproblems that can be solved in parallel. This requires
breaking the coupling that appears due to the dynamics. We
introduce a copy of each variable that couples the dynamics
equations in order to allow such a splitting into subproblems,
and subsequently impose a consensus constraint on the
associated complicating variables and their copies. This leads
to the following equivalent formulation of (1), where the
complicating variables that are used to perform the splitting
are clearly highlighted:

minimize
1
2

N

∑
t=0

(
x(t)Tt Qtx

(t)
t +u(t)Tt Rtu

(t)
t

)
(2a)

subject to (x(t)t ,u(t)t) ∈Xt ×Ut , t = 0, . . . ,N (2b)

x(t)t+1 = Atx
(t)
t +Btu

(t)
t + ct , (2c)

x(0)0 = xinit (2d)

z̃t+1 = x(t)t+1 (2e)

z̃t+1 = x(t+1)
t+1 , t = 0, . . . ,N−1, (2f)

where the subscript t of the decision variables x(t)t ,u(t)t
indicates the time index and the superscript (t) denotes the
group or subproblem where the variable belongs to. Hence,
each subproblem contains three variables, the current state
and input as well as a prediction of the state for the next
time instant. The introduced complicating variable z̃t acts as
a ‘global’ variable that brings the local copies x(t−1)

t and x(t)t
in agreement, i.e., z̃t = x(t−1)

t = x(t)t . The time-splitting idea
is graphically depicted in Figure 1.

Fig. 1. The idea of the time splitting algorithm. Variables coupled via
dynamics are decoupled using a slack variable z̃t = xt

t = x(t−1)
t .

B. The time-splitting algorithm
In order to use a more compact formulation, we will

denote the decision variables in (2) corresponding to each
subproblem using

x̃t = (x(t)t ,u(t)t ,x(t)t+1), (3)

where x̃t ∈ R2n+m. We also introduce dual variables to deal
with the consensus equality constraints:

• w̃t associated with x(t)t = z̃t , t = 1, . . . ,N
• ṽt associated with x(t−1)

t = z̃t , t = 1, . . . ,N.

In order to rewrite the finite-time optimal control problem in
a more compact form, we define the following matrices:

Pt = diag
(

Qt ,Rt ,0
)
∈ R(2n+m)×(2n+m), (4a)

Ft =
[
−At −Bt I

]
∈ Rn×(2n+m), (4b)

G0 =
[

I 0 0
]
∈ Rn×(2n+m), (4c)

G1 =
[

0 0 I
]
∈ Rn×(2n+m), (4d)

where the operator diag(·) indicates the block diagonal
structure of the matrices involved.

We use the Alternating Direction Method of Multipliers
(ADMM) [13], [14] in order to arrive at a solution
approach that is amenable to parallel implementation.
The updates involved in the ADMM algorithm include
forming the augmented Lagrangian of the problem and
minimizing over the primal variables x̃t , t = 0, . . . ,N and
z̃t , t = 1, . . . ,N, followed by updating the dual variables w̃t
and ṽt , t = 1, . . . ,N. The three main steps of the algorithm
are performed in an iterative fashion and are described
next in detail. We use k to denote the algorithm’s loop
counter. The termination criterion based on primal and
dual tolerances are provided. The analytic derivation of the
formulas can be found in [15].

Step 1: Solving N +1 QP subproblems for the primal
variables in x̃t
Minimization of the augmented Lagrangian over the primal
variables x̃t results in N + 1 stage-wise quadratic programs
(QPs):

• For the subproblem associated with the time instant t =
0, we need to compute x̃0 by solving

minimize (1/2)x̃T
0 P0x̃0−ρ ṽkT

1 (G1x̃0− z̃k
1)

+(ρ/2)‖G1x̃0− z̃k
1‖2

2
subject to x̃0 ∈ C0

G0x̃0 = xinit
F0x̃0 = c0

(5)
• Similarly, we need to solve the following QPs for all

the other groups of variables x̃t , t = 1, . . . ,N−1:

minimize (1/2)x̃T
t Pt x̃t −ρ ṽkT

t+1(G1x̃t − z̃k
t+1)

+(ρ/2)‖G1x̃t − z̃k
t+1‖2

2
−ρw̃kT

t (G0x̃t − z̃k
t)

+(ρ/2)‖G0x̃t − z̃k
t ‖2

2
subject to x̃t ∈ Ct

Ft x̃t = ct
(6)

• For the subproblem associated with the final time instant
t = N, we need to compute x̃N by solving

minimize (1/2)x̃T
NPN x̃N−ρw̃kT

N (G0x̃N − z̃k
N)

+(ρ/2)‖G0x̃N− z̃k
N‖2

2
subject to x̃N ∈ CN

(7)

The polyhedral sets Ct , t = 0, . . . ,N are defined as

Ct = Xt ×Ut ×Xt+1 ⊆ R2n+m (8)

and the variable ρ > 0 is a parameter of the algorithm.
Remark 1: Notice that for the time instant N the decision

variables of the QP actually simplify to x̃N = xN and CN =
XN , but we keep the same notation for simplicity (and
without loss of generality).

Step 2: Averaging
The update of the ‘global’ primal variables z̃t , t = 1, . . . ,N is
derived from a simple quadratic minimization problem, the
solution of which turns out to be an average of the predicted
(x(t−1)

t) and current (x(t)t) state

z̃k+1
t =

G0x̃k+1
t +G1x̃k+1

t−1

2
, t = 1, . . . ,N. (9)

This intuitively makes sense, since the global variable can be
obtained by collecting the local (primal) ones and computing
the best estimate based on their values.

Step 3: Dual update
The dual updates can be expressed as

w̃k+1
t = w̃k

t −G0x̃k+1
t + z̃k+1

t , (10a)
ṽk+1

t = ṽk
t −G1x̃k+1

t−1 + z̃k+1
t , t = 1, . . . ,N. (10b)

Termination criterion
The algorithm terminates when a set of primal and dual
residuals are bounded by a specified threshold (primal and
dual tolerances); see [12, §3.2]. The primal and dual residuals
for the time-splitting algorithm are respectively defined as

rk = Aresxk
pri +Breszk

pri, sk =−ρAT
resBres(zk

pri− zk−1
pri). (11)

The termination criterion is activated when

‖rk‖2 ≤ ε
pri, ‖sk‖2 ≤ ε

dual,

where the tolerances εpri and εdual are defined as follows:

ε
pri = ε

abs
√

N2n+ ε
rel max{‖Aresxpri‖2,‖Breszpri‖2,‖cres‖2}

ε
dual = ε

abs
√

(2n+m)(N +1)+ ε
rel‖AT

resvdual‖2
(12)

and we defined the vectors

xpri =
(

x̃0, x̃1, . . . , x̃N
)
,

zpri =
(

z̃1, z̃2, . . . , z̃N
)
,

vdual =
(

ṽ1, w̃1, ṽ2, . . . , ṽN , w̃N
)
.

Using ⊗ to denote the Kronecker product, the residual
matrices Ares and Bres and the residual vector cres are

Ares = diag
(

G1, IN−1⊗ (G0,G1),G0
)
∈ RN2n×(N+1)(2n+m),

Bres = diag
(

IN⊗ (−I,−I)
)
∈ RN2n×Nn,

cres = 0 ∈ RN2n.

The three update steps described above are fully paral-
lelizable at each iteration k. Assuming N + 1 processors
are available, then processor Πt would need to execute the
following actions for t = 0, . . . ,N−1:

1) Receive the estimate z̃k
t+1 and ṽk

t+1 from neighboring
processor Πt+1 (6).

2) Compute x̃k+1
t and send to processor Πt+1.

3) Receive the estimate x̃k+1
t−1 from neighboring processor

Πt−1 and compute z̃k+1
t (9).

4) Compute w̃k+1
t and ṽk+1

t (10), and send to Πt−1.
The above scheme suggests that each processor Πt , t =
1, . . . ,N − 1 interacts with the two neighboring processors
Πt−1 and Πt+1. Processors Π0 and ΠN communicate only
with processors Π1 and ΠN−1, respectively. After updating
all variables, a gather operation follows in order to compute
the residuals and check the termination criterion.

III. THREE-SET SPLITTING QP SOLVER
A. Motivation

The time-splitting algorithm presented in the previous sec-
tion decomposes the centralized finite-time optimal control
problem so that it can be solved using multiple parallel
processors. However, the updates for the primal variables
x̃t , t = 0, . . . ,N given in (5), (6) and (7) involve solving a
QP at each iteration of the algorithm. Even though several
fast interior point solvers exist for this purpose (see e.g.,
[16]), these are mostly suitable for only a limited number of
variables. Although recently more computationally efficient
schemes that scale better with the problem size have been
developed, they are restricted to cases where simple box
constraints are considered [8], [10], [17]. In order to achieve
fast computations in an embedded control environment, other
generic solution methods would be preferred.

In this section we propose an alternative scheme for
solving the QPs with general polyhedral constraints that
arise in the previous section. We propose to perform yet
another type of splitting approach, which splits the state-
input variables of the QP in three sets. One set involves
the variables that appear in the objective function, another
includes the ones in the dynamics equality constraints, and
the last set contains variables from the inequality constraints.
In this way, we solve three simpler subproblems instead of
the single general QP. Since several variables are shared
among the subproblems, their solutions must be in consensus
again to ensure consistency.

An important element of the proposed method is the
introduction of an extra slack variable, which allows to
get an analytic solution for the subproblem associated
with the inequality constraints. Using this variable, the
projection on any polyhedral set can be practically rewritten
as a projection onto the nonnegative orthant. Besides this
feature, the proposed splitting exploits structure in the
resulting matrices and thus modern numerical linear algebra
methods can be employed for speeding up the computations.

B. Problem setup
We consider a QP of the form

minimize 1
2 xT Mx+qT x+ r

subject to Ax = b
Hx� h,

(13)

with decision variable x ∈Rn, where M ∈ Sn
+, q ∈Rn, r ∈R,

A ∈Rm×n, b ∈Rm, H ∈Rp×n, h ∈Rp and Sn
+ is the cone of

positive semidefinite matrices of dimension n.
In order to apply a variable splitting idea for this problem

we first replicate all variables appearing in (13) three times,
introducing three different sets for which we must ensure
consensus. Furthermore, we use a slack variable to remove
the polyhedral constraint and transform it into a projection
operation onto the nonnegative orthant. We define the fol-
lowing sets of variables:
• First set - objective: xI

• Second set - equality constraints: xII

• Third set - inequality constraints: xIII

• First global variable: z = xI = xII = xIII

• Second global variable: y = h−Hx(III)

• First set of dual variables: z̃I, z̃II, z̃III associated with z =
xI = xII = xIII, respectively.

• Second set of dual variables: ỹ assoc. with y = h−HxIII

Using the above sets of variables problem (13) can be
restated in the equivalent form

minimize
1
2

xIT MxI +qT xI + r (14a)

subject to AxII = b (14b)
y = h−HxIII, y� 0 (14c)
xI = xII = xIII = z, (14d)

with variables xI,xII,xIII,z ∈ Rn,y ∈ Rp. The dual variables
are of dimensions z̃ ∈ Rn, ỹ ∈ Rp.

C. The proposed three-set splitting algorithm

The proposed algorithm consists of iterative updates to the
three ADMM steps similarly to the case of the time-splitting
approach in Section II-B, namely one for the (local) primal
variables xI,xII,xIII, one for the (global) primal variables
z and y and one for the dual variables z̃I, z̃II, z̃III and ỹ.
We provide the algorithm’s steps below along with some
clarifying comments. The analytic derivations are presented
in the Appendix.

Step 1: Solving three subproblems for the primal
variables xI,xII,xIII

In all three cases we have to solve simple, unconstrained
QPs. The updates are:(

xI)k+1
= (M+ρI)−1(ρ(zk +

(
z̃I)k

)−q) (15)[
ρI AT

A 0

][(
xII
)k+1

ν

]
=

[
ρ(zk +

(
z̃II
)k
)

b

]
, (16)

where ν is the dual variable associated with the equality
constraint AxII = b, and(

xIII)k+1
= (HT H + I)−1

(
HT (h− ỹk− yk)+

zk +
(
z̃III)k

)
. (17)

The matrices M + ρI and HT H + I are symmetric positive
definite due to the regularization terms. This means that,

instead of directly inverting the matrices, we can save com-
putational effort by taking the Cholesky factorization, i.e.,
write the matrix as a product of a lower triangular matrix
and its transpose (see, e.g., [18]). Furthermore, the matrix[

ρI AT

A 0

]
is a KKT matrix and ρI � 0. Hence we can

exploit its structure and use block elimination to solve the
KKT system (see [19, App. C]). The resulting matrices can
be pre-factorized and then used in every solve step. The right-
hand sides are the only parts that change in the update loop.

Step 2: Averaging and projection
The update for z is

zk+1 =
1
3

III

∑
i=I

(
xi)k+1

, (18)

while for y it is

yk+1 =
(

h−H
(
xIII

t
)k+1− ỹk

)
+
. (19)

The z-update is an averaging over the three sets of the primal
variables xI,xII,xIII, while the y-update is the solution of a
proximal minimization problem (see Appendix), resulting in
a projection onto the nonnegative orthant, denoted by (·)+.

Step 3: Dual update
The update for the dual variables z̃i is(

z̃i)k+1
=
(
z̃i)k−

(
xi)k+1

+ zk+1, i = I, II, III. (20)

Similarly, the update for ỹ is

ỹk+1 = ỹk + yk+1−h+H
(
xIII)k+1

. (21)

Remark 2: The termination criterion used for the algo-
rithm is the same as for the time-splitting one (see Section
III). The formulas for the residuals and matrices are not ex-
plicitly reported here due to the limited space. The interested
reader can find them in [15].

Remark 3: For the QP corresponding to the last sample
time t = N (7), the algorithm simplifies to splitting into two
sets (objective and inequality constraints), since there are
no dynamics equality constraints. The updates and residuals
follow directly from the more generic case presented above.

IV. HIERARCHICAL TIME-SPLITTING OPTIMAL
CONTROL

It is a natural idea to combine the two splitting algorithms
(time-splitting and three-set splitting) that were introduced in
the preceding two sections in order to speed up the solution
of the finite-time optimal control problem (1). This can be
accomplished via a nested decomposition scheme, where we
employ the three-set splitting algorithm to solve the QPs
(5), (6) and (7) appearing in Step 1 of the time-splitting
algorithm. If we rewrite the generalized inequality constraints
appearing in the problem formulation as

(x(t)t ,u(t)t) ∈ Ct ⇔ Ht x̃t � ht , t = 0, . . . ,N, (22)

then the QPs can be written in the form described by (13).
The idea is graphically depicted in Figure 2. The exact
expressions for the QPs are given in [15].

Global Problem

Global Solution

QP subproblem

at t=0

Solve

Subproblem III

at t=0

Solve

Subproblem II

at t=0

Solve

Subproblem I

at t=0

Solution

at t=0

3-set splitting

QP subproblem

at t=1

Solve

Subproblem III

at t=1

Solve

Subproblem II

at t=1

Solve

Subproblem I

at t=1

Solution

at t=1

3-set splitting

QP subproblem

at t=N

Solve

Subproblem III

at t=N

Solve

Subproblem I

at t=N

Solution

at t=N

2-set splitting

consensusconsensusconsensus

split split split

split

consensus

time splitting

Fig. 2. Structural representation of the hierarchical time-splitting solution approach to the finite-time optimal control problem. The outer subproblems at
t = 0,1, . . . ,N refer to (5), (6) and (7), respectively. The solutions of the nested subproblems enumerated by I, II and III correspond to (15), (16) and (17).
Notice that only 2 subproblems have to be solved for the last time instant t = N.

For each iteration of the time-splitting algorithm, the three-
set splitting algorithm runs in an inner loop until it converges.
The quality of this convergence, i.e., the choice of the primal
and dual tolerances of the inner loop (Remark 2) will affect
the quality of the global solution.

A method that enables substantial speedup of the algorithm
is warm starting. Since the three-set splitting algorithm will
run for every iteration of the time-splitting algorithm, we
can warm-start each QP with its previous solution. In this
way, we can achieve a significant reduction in the number
of iterations needed for the convergence of the inner loop.

V. NUMERICAL RESULTS

We consider three, randomly generated, numerical ex-
amples to illustrate the performance of the algorithm. The
examples vary in terms of the number of decision vari-
ables involved. The systems considered are linear and time-
invariant. We impose constraints on the difference between
two consecutive states at each time instant of the form

xt,i− xt,i−1 ≤ dx,

where xti ∈ R, i = 1, . . . ,n, , t = 0, . . . ,N and box constraints
on the inputs, i.e.,

‖ut‖∞ ≤ umax, t = 0, . . . ,N−1.

By adjusting the level of disturbance ct in several time
instances, we ensure activation of the constraints along the
horizon.

For the simulations, we used an Intel Core i7 processor
running at 1.7 GHz. We compared a C-implementation of
our algorithm with using CVX [20], a parser-solver that
uses SDPT3 [21]. For our method, the tolerances for both

the outer and inner algorithms are set as εpri = 10−4 and
εdual = 10−3. The parameter ρ was set after some simple
tuning. The linear systems appearing in (15), (16) and (17)
were solved by first factorizing the matrices off-line, using
Tim Davis’s sparse package [22]–[24] (see also [8]). The
finite-time optimal control problem was solved only once
and all the primal and dual variables were initialized at
zero. However, the inner algorithm was warm-started at every
iteration of the outer algorithm to the values acquired from
the previous iteration. No relaxation or any other variance
of the iterations was used. The numerical results in terms of
computation times are summarized in Table I.

We can observe that, in the case of the small system, even
when solving the problem on a single thread, the computation
times are smaller than those of CVX. As the problem scales,
the computations have to be parallelized in order to gain
a significant advantage. More specifically, we expect the
following speedup factors: 13 and 31 times faster in the case
of the small problem (for the corresponding tolerances set to
10−4 and 10−3 respectively). For the medium-sized problem
the speedups are by a factor of 10.5 and 24.6, and a factor
of 5.4 and 11.7 for the large-scale problem, respectively.

In addition, we could observe that the factorization times
are negligible in all cases, since the matrices being factorized
are not large. Concerning the three-set splitting algorithm,
only the average computational times are indicated over all
iterations required to solve the problem. Warm starting was
used when running the inner algorithm, as described in the
previous section.

small medium large
states n 10 20 50
inputs m 10 10 40

horizon length N 10 30 60
total variables 220 900 5400

ρ 15 25 50
active box constraints 5 6 20

active inequality constraints 2 2 4
CVX solve time 2430 3529 19420
factorization time 3.18 9.5 30

Tolerance 10−4

3-set (average) iterations 21.80 17 15.95
3-set (average) solve time 0.75 1.38 9.15

time-split. iterations 250 241 389
time-split. solve time (single thread) 1880 10023 215888
time-split. solve time (N threads∗) 188 334.1 3598

Tolerance 10−3

3-set (average) iterations 13.14 13.27 12.32
3-set (average) solve time 0.49 1.18 7.34

time-split. iterations 156 128 224
time-split. solve time (single thread) 780 4304 99525
time-split. solve time (N threads∗) 78 143.47 1659

∗ estimated parallel computation times

TABLE I
HIERARCHICAL TIME-SPLITTING OPTIMAL CONTROL: COMPUTATIONAL

TIME RESULTS (MS) FOR DIFFERENT SIZE PROBLEMS.

VI. CONCLUSIONS
In this paper, we proposed an algorithm that solves a cen-

tralized convex finite-time optimal control problem making
use of operator splitting methods, and, more specifically,
the Alternating Direction Method of Multipliers. The initial
problem is split into as many subproblems as the horizon
length, which then can be solved in parallel.

The resulting algorithm is composed of three steps, in-
cluding one where several QPs have to be solved. In this
respect, we proposed another method, based again on opera-
tor splitting, that is applicable to QPs of any size, involving
polyhedral constraints. This algorithm exploits the structure
of the problem, leading to fast solutions.

The combination of the proposed algorithms results in a
nested decomposition scheme for solving the aforementioned
finite-time optimal control problems over several parallel
processors.

Our numerical experiments suggest that the proposed hier-
archical decomposition approach provides significant speed-
up in computational time required for medium accuracy
solutions for the class of problems considered. In our future
work we intend to perform an even more extensive compar-
ison with very recent tailor-made computational tools, and
implement the algorithm on a parallel computing platform to
obtain more accurate and representative computational time
measurements.

ACKNOWLEDGMENTS
The main part of this work was carried out at Stanford. The au-

thors would like to thank Stephen Boyd and Brendan O’Donoghue

for helpful discussions. The research leading to these results has
received funding from the European Union’s Seventh Framework
Programme (FP7-RECONFIGURE/2007–2013) under grant agree-
ment no 314544.

REFERENCES

[1] EMBOCON - Embedded Optimization for Resource Constrained Plat-
forms. EU project, 2010-2013. http://www.embocon.org.

[2] G. Constantinides, “Tutorial paper: Parallel architectures for model
predictive control,” in European Control Conf., pp. 138–143, 2009.

[3] R. Gu, S. Bhattacharyya, and W. Levine, “Methods for efficient im-
plementation of model predictive control on multiprocessor systems,”
in IEEE Multi Systems Conf., pp. 1357–1364, 2010.

[4] J. Jerez, G. Constantinides, E. Kerrigan, and K. V. Ling, “Parallel MPC
for Real-Time FPGA-based Implementation,” in IFAC World Congress,
pp. 1338–1343, 2011.

[5] A. Wills, A. Mills, and B. Ninness, “FPGA Implementation of an
Interior-Point Solution for Linear Model Predictive Control,” in IFAC
World Congress, pp. 14527–14532, 2011.

[6] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control. Cam-
bridge University Press, 2012. In press.

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, ch. 20.3.3.
Operator Splitting Methods Generally. Cambridge Univ. Press, 2007.

[8] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method
for optimal control,” IEEE Trans Control Sys Tech, 2013. To appear.

[9] G. Stathopoulos, “Fast optimization-based control and estimation
using operator splitting methods,” Master’s thesis, Delft Center for
Systems and Control, Delft University of Technology, July 2012.

[10] M. Kögel and R. Findeisen, “Parallel solution of model predictive
control using the alternating direction multiplier method,” in 4th IFAC
Nonlinear Model Predictive Control Conf., pp. 369–374, Aug. 2012.

[11] S. Boyd, M. Mueller, B. O’Donoghue, and Y. Wang, “Perfor-
mance bounds and suboptimal policies for multi-period invest-
ment.” http://www.stanford.edu/˜boyd/papers/port_
opt_bound.html, 2012.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, pp. 1–122, 2011.

[13] R. Glowinski and A. Marrocco, “Sur l’approximation, par elements fi-
nis d’ordre un, et la resolution, par penalisation-dualité, d’une classe de
problems de Dirichlet non lineares,” Revue Française d’Automatique,
Informatique, et Recherche Opérationelle, vol. 9, pp. 41–76, 1975.

[14] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite element approximations,”
Computers and Mathematics with App., vol. 2, pp. 17–40, 1976.

[15] G. Stathopoulos, T. Keviczky, and Y. Wang, “A hierarchical time-
splitting approach for solving finite-time optimal control problems.”
arXiv:1304.2152 [math.OC], 2013.

[16] J. Mattingley and S. Boyd, “CVXGEN: A Code Generator for Em-
bedded Convex Optimization,” Optimization and Engineering, vol. 13,
pp. 1–27, 2012.

[17] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Trans Contr Sys Tech, vol. 18, pp. 267–278, 2010.

[18] G. H. Golub and C. F. V. Loan, Matrix computations. Johns Hopkins
University Press, third ed., 1966.

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[20] G. M. Grant, S. Boyd, and Y. Ye, Global Optimization: From Theory to
Implementation, ch. Disciplined Convex Programming, pp. 155–210.
Nonconvex Optimization and its Applications, Springer, 2006.

[21] K. Toh, M. Todd, and R. Tütüncü, “SDPT3: A Matlab software
package for semidefinite programming,” Optimization Methods and
Software, vol. 11, pp. 545–581, 1999.

[22] T. Davis, “Algorithm 849: A concise sparse Cholesky factorization
package,” ACM Trans Math Software, vol. 31, pp. 587–591, Dec. 2005.

[23] P. Amestoy, T. Davis, and I. Duff, “Algorithm 837: AMD, an ap-
proximate minimum degree ordering algorithm,” ACM Trans Math
Software, vol. 30, pp. 381–388, Sept. 2004.

[24] T. Davis, Direct Methods for Sparse Linear Systems. Fundamentals
of Algorithms, SIAM, 2006.

